填空题(2012年广东省深圳市

二次函数y=x2-2x+6的最小值是________.

答案解析

5

讨论

因式分解:a3 - ab2=________________.

如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为【 】

小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30°,同一时刻,根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为【 】

下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有【 】

端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是【 】

如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为【 】

体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的【 】

下列运算正确的是【 】

如图,抛物线y=ax2-2x+c(a≠0)过点O(0,0)和A(6,0),点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标; (3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合,连接EF,将ΔBEF沿EF折叠,点B的对应点为点B,ΔEFB'与ΔOBE的重叠部分为ΔEFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.

如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有【 】

若a+b=3,a2+b2=7,则ab=_______.

已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=_______.

如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

已知抛物线y=1/2 x2+x+c与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.

如图,抛物线y=1/2 x2-3/2 x-9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行于BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

使在实数范围内有意义,x的取值范围是__________.

升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为【 】

对抛物线:y=-x2+2x-3而言,下列结论正确的是【 】

深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表1:表2:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?

如图(左),抛物线y=ax2+bx+c (a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0). (1)求抛物线的解析式;(2)如图(中),过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图(右),在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN//BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

已知二次函数y=ax2+bx+c的图像开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是【 】

已知二次函数y=x2+mx+m2-3(m为常数,m>0)的图像经过点P(2,4).(1)求m的值:(2)判断二次函数y=x2+mx+m2-3的图像与x轴交点的个数,并说明理由.

李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?

如图,点P(a,3)在抛物线C:y=4-(6-x)2上,且在C的对称轴右侧. (1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P',C',平移该胶片使C'所在抛物线对应的函数恰为y=-x2+6x-9.求点P'移动的最短路程.

下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。用函数观点认识一元二次方程根的情况:我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图像(称为抛物线)与x轴交点的横坐标,抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点,与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根,因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(-b/2a,(4ac-b2)/4a)和一元二次方程根的判别式∆=b2-4ac,分a>0和a<0两种情况进行分析:(1) a>0时,抛物线开口向上.①当∆=b2-4ac>0时,有4ac-b2<0.∵a>0,∴顶点纵坐标(4ac-b2)/4a<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图).②当∆=b2-4ac=0时,有4ac-b2=0.∵a>0,∴顶点纵坐标(4ac-b2)/4a=0∴顶点在x轴上,抛物线与x轴有一个交点(如图).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当∆=b2-4ac<0时,.....(2) a<0时,抛物线开口向下……任务:(1)上面小论文中的分析过程,主要运用的数学思想是______(从下面选项中选出两个即可);A.数形结合 B.统计思想 C.分类讨论 D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,∆<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为__________.