单项选择(2012年广东省深圳市

小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30°,同一时刻,根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】

A、(6+)米

B、12米

C、 (4-2)米

D、10米

答案解析

A

讨论

小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为 60°,求山高【 】

在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=________.

已知BD 垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.

如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.

如图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_______.

阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°. 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法依据的数学定理或基本事实(写出一个即可)

如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是【 】

如图所示,∠AOB是放置在正方形网格中的一个角,则sin⁡∠AOB的值是________.

图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.α的度数β的度数CD的长度仪器CD(EF)的高度测量数据31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin⁡3 1°≈0.52,cos⁡3 1°≈0.86,tan⁡3 1°≈0.60,sin⁡4 2°≈0.67,cos⁡4 2°≈0.74,tan⁡4 2°≈0.90)

如图,ΔABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为_______.

以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(1)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到,组数据如下表:(单位:厘米)(2)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析;①设BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点;②连线;观察思考(3)结合表中的数据以及所面的图像,猜想.当x=__________时,y最大;(4)进一步C猜想:若Rt△MBC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC= _________时,AC+BC最大.推理证明(5)对(4)中的猜想进行证明.问题1.在图①中完善(2)的描点过程,并依次连线;问题2.补全观察思考中的两个猜想:(3) _______ (4) _______问题3.证明上述(5)中的猜想:问题4.图②中折线B-E-F-G-A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米,∠E=∠F=∠G=90°,平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区城,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】

如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

如图,小山岗的斜坡AC的坡度是tanα=3/4,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26:6°=0.45, cos26.6°=0.89, tan26.6°=0.50).

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

【图形定义】有一条高线相等的两个三角形称为等高三角形,例如:如图①,在∆ABC和∆A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则∆ABC和∆A'B'C'是等高三角形。 【性质探究】如图①,用S∆ABC和S∆A'B'C'分别表示∆ABC和∆A'B'C'的面积,则S∆ABC=1/2 BC∙AD,S∆A' B' C'=1/2 B'C'∙A'D',∵AD=A'D'∴S∆ABC:S∆A'B'C'=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S∆ABD:S∆ADC=________;(2)如图③,在ΔABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S∆ABC=1,则S∆BEC=______, S∆DEC=________.(3)如图③,在ΔABC中,D,E分别是BC和AB边上的点. 若BE:AB=1:m,CD:BC=1:n,S∆ABC=a,则S∆DEC=________.

如图,将△ABC折叠,使AC边落在△AB边上,展开后得到折痕l,则l是ABC的【 】

如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为a,β,则正确的是【 】

题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2;乙答:d=1.6;丙答:d=√2,则正确的是【 】

下图是由一个长方体和一个圆锥组成的几何体,它的主视图是【 】

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是【 】

各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+1/2b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=_______.

欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:__________.

正八边形的每个内角为【 】

如图1(左),将一个正六边形各边延长,构成一个正六角星形 AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形 A1F1B1D1C1E1,如图2(中)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2D2C2E2,如图3(右)中阴影部分,如此下去…,则正六角星形 A4F4B4D4C4E4的面积为________.

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

如图,直角梯形纸片ABCD中,AD//BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.

如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是【 】