单项选择(2012年广东省

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】

A、5

B、6

C、11

D、16

答案解析

C

讨论

如图所示的几何体的主视图是【 】

数据8、8、6、5、6、1、6的众数是【 】

地球半径约为6400000米,用科学记数法表示为【 】

-5的绝对值是【 】

如图,抛物线y=-5/4 x2+17/4 x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点0,点C重合的情况),连接CM,BN,当t为何值时,四边形BCN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

如图(左),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DE90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(右). (1)问:始终与△AGC相似的三角形有__________及__________;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(右)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.

如图,直角梯形纸片ABCD中,AD//BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.

李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?

如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)

用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:Rt△ABC,∠B=90°.求作:点P使点P在△ABC内部,且PB=PC,∠PBC=45°.

如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m. (1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据: tan76°取4,√17取4.1)

随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度,某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处的俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长.(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).

问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由.问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.

如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆心,大于1/2 MN的长为半径画弧,两弧在∠ABC 的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠A的度数是【 】

如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=2,DE=1,则S△ACD=________.

下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明。三角形内角和定理:三角形三个内角和等于180°,已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一 证明:如图,过点A作DE//BC. 方法二证明:如图,过点C作CD//AB.

已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA 的面积分别记为S0,S1,S2,S3.若S1+S2+S3=S0,则线段OP长的最小值是【 】

小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为 60°,求山高【 】

在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=________.

已知关于x的一元二次方程x2-4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.

如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为【 】

①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择【 】

要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量,两同学提供了如下间接测量方案(如图1和图2):对于方案I、Ⅱ,说法正确的是【 】方案I①作一直线GH,交AB,CD于点E,F;②利用尺规作∠HFN=∠CFG;③测量∠AEH的大小即可.方案 Ⅱ①作一直线GH,交AB,CD于点E,F;②测量∠AEH和∠CFG的大小;③计算180°-∠AEH-∠CFG即可.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

神奇的自然界处处蕴含着数学知识,动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的【 】

下面几何体中,是圆锥的为【 】

在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(-2,0),点Q为点P的“对应点”. ①在图中画出点Q;②连接PQ.交线段ON于点T.求证:NT=1/2 OM.(2) ⨀O的半径为1,M是⨀O上一点,点N在线段OM上,且ON=t(1/2<t<1),若P为⨀O外一点,点Q为点P的“对应点”,连接PQ.当点M在⨀O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).

一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是【 】

由几个大小相同的正方形组成的几何图形如图,则它的俯视图是【 】