单项选择(2012年广东省

数据8、8、6、5、6、1、6的众数是【 】

A、1

B、5

C、6

D、8

答案解析

C

讨论

2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表请根据图表中所提供的信息,完成下列问题:(1)表中a=_______,b=_______;(2)样本成绩的中位数落在_______范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?

某中学九年级举办中华优秀传统文化知识竞赛,用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.

为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析,下面给出了部分信息:a.甲城市邮政企业4月份收入的数据的频数分布直方图如下:数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16. b.甲城市邮政企业4月份收入的数据在10≤x<12,这一组的数据是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8.c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下: 平均数 中位数甲城市 10.8 m乙城市 11.0 11.5根据以上信息,回答下列问题:(1).写出表中m的值:(2).在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1,在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由:(3).若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).

在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图② 请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m的值为________;(Ⅱ)求统计的这组项数数据的平均数、众数和中位数.

为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如两幅不完整的统计图: 请你根据统计图的信息,解决下列问题:(1)本次共调查了_________名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为_________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.

某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为【 】

随机调查某城市30天空气质量指数(AQI),绘制成如下扇形统计图。空气质量等级 空气质量指数(AQI) 频数优 AQI≤50 m良 50<AQI≤100 15中 100<AQI≤150 9差 AQI>150 n(1)m=_____,n=_____;(2)求良的占比;(3)求差的圆心角;(4)折线图是一个月内的空气污染指数统计,然后根据这个一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.根据折线统计图,一个月(30天)中有_____天AQI为中,估测该城市一年(以365天计)中大约有______天AQI为中.

首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.

在一次视力检查中,某班7名学生右眼视力的检查结果为:4.2、4.3、4.5、4.6、4.8、4.8、5.0,这组数据的中位数和众数分别是【 】

某市教育局为了解“双减”政策落实情况,随机抽取几所学校部分初中生进行调查,统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:学生平均每天完成作业时长频数分布直方图学生平均每天完成作业时长扇形统计图请根据图表中提供的信息,解答下面的问题:(1)在调查活动中,教育局采取的调查方式是______(填写“普查”或“抽样调查”);(2)教育局抽取的初中生有______人,扇形统计图中m的值是______;(3)已知平均每天完成作业时长在“100≤t<110”分钟的9名初中生中有5名男生和4名女生,若从这9名学生中随机抽取一名进行访谈,且每一名学生被抽到的可能性相同,则恰好抽到男生的概率是______;(4)若该市共有初中生10000名,则平均每天完成作业时长在“70≤t<80”分钟的初中生约有______人.

在-2,1,2,1,4,6中正确的是【 】

2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.

习近平总书记于2019年8月在兰州考察时说黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.下图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图. 请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了_________天;(2)这七年的全年空气质量优良天数的中位数是_________天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.

2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生,根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图 (1)本次共调查的学生人数为_____,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是_____,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.

下列数据:75,80,85,85,85,这组数据的众数和极差是【 】

某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:甲 12.0 12.0 12.2 11.8 12.1 11.9乙 12.3 12.1 11.8 12.0 11.7 12.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.

某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是【 】

一组数据1,8,8,4,6,4的中位数是【 】

某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2(1)表格中的a=______, b=______;(2)在这次调查中,参加志愿者活动的次数的众数为______,中位数为______;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.

某校有 21名同学们参加某比赛,预赛成绩各不同,要取前 11 名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的【 】

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.

按下面程序计算:输入x=3,则输出的答案是________.输入x → 立方 → -x → ÷2 → 答案

阅读下列材料:1×2=1/3·(1×2×3-0×1×2),2×3=1/3·(2×3×4-1×2×3),3×4=1/3·(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=1/3×3×4×5=20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+⋯+10×11(写出过程);(2) 1×2+2×3+3×4+n×(n+1)=____________;(3) 1×2×3+2×3×4+3×4×5+⋯+7×8×9=____________.

不等式组的解集为【 】

某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?

解不等式组, 并把解集在数轴上表示出来.

观察下列等式:第1个等式:a1=1/(1×3)=1/2×(1-1/3);第2个等式:a2=1/(3×5)=1/2×(1/3-1/5);第3个等式:a3=1/(5×7)=1/2×(1/5-1/7);第4个等式:a4=1/(7×9)=1/2×(1/7-1/9);…请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________;(2)用含有n的代数式表示第n个等式:an=________________=________________(n为正数);(3)求a1+a2+a3+⋯+a100的值.

分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.

在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为【 】

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.