单项选择题(2011年广东省

在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为【 】

A、1/5

B、1/3

C、5/8

D、3/8

参考答案

关键词

概率;数学;不透明;装有;颜色;从中;摸出;摸到;

将下图中的箭头缩小到原来的1/2,得到的图形是【 】。

据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为【 】。

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.

阅读下列材料:1×2=1/3·(1×2×3-0×1×2),2×3=1/3·(2×3×4-1×2×3),3×4=1/3·(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=1/3×3×4×5=20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+⋯+10×11(写出过程);(2) 1×2+2×3+3×4+n×(n+1)=____________;(3) 1×2×3+2×3×4+3×4×5+⋯+7×8×9=____________.

已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4. (1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小______度时,四边形ACDE成为以ED为底的梯形(如图(2)).求此梯形的高.

某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.

如图,一次函数y=kx-1的图象与反比例函数y=m/x的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.

不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是【 】

下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.

生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂器色或不涂色可表示两个不同的信息. (1)用树状图或列表格的方法,求图③可表示不同信息的总个数:(图中标号1,2表示两个不同位置的小方格,下同) (2)图④为2×2的网格图.它可表示不同信息的总个数为__________; (3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示各人身份信息,若该校师生共492人,则n的最小值为__________.

一只不进明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为__________.

“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率.(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为5/7,那么应添加多少张《消防知识手册》卡片?请说明理由.

在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.

下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是【 】

2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家"5A" 级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区:C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).

在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有_________个.

如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是【】