单项选择(2016年广东省深圳市

数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是【 】

A、1/7

B、1/3

C、1/21

D、1/10

答案解析

A

讨论

如图,已知a//b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是【 】

据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学记数法表示为【 】

下列图形中,是轴对称图形的是【 】

下列运算正确的是【 】

把下列图标折成一个正方体的盒子,折好后与“中”相对的字是【 】

下列四个数中,最小的正数是【 】

如图1,关于x的二次函数y=-x²+bx+c经过点A(-3,0),C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2) DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

下表为深圳市居民每月用水收费标准,(单位:元/m³).用水量 单价x a剩余部分 a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户 5月份交水费 71元,请问该用户用水多少立方米?

假设小丽的眼睛距地面1.5米,当她站在C点时,测出旗杆A的仰角为 30°,如果向前走 10米到达点E,此时的仰角为60°,求旗杆AB的高度.

下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是【 】

“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率.(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为5/7,那么应添加多少张《消防知识手册》卡片?请说明理由.

一只不进明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为__________.

下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.

不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是【 】

分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.

在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为【 】

4张相同的卡片上分别写有数字0、1、-2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来:再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为______.(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由)

不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,如果是红球,不放回再随机换出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是______.

某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是______.

在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.

生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂器色或不涂色可表示两个不同的信息. (1)用树状图或列表格的方法,求图③可表示不同信息的总个数:(图中标号1,2表示两个不同位置的小方格,下同) (2)图④为2×2的网格图.它可表示不同信息的总个数为__________; (3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示各人身份信息,若该校师生共492人,则n的最小值为__________.

下列事件中是必然事件的是【 】

下列事件中,属于不可能事件的是【 】

为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”,该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为x1、x2,1名男生,记为y1;在八年级选出3名同学,其中1名女生,记为x3,2名男生,分别记为y2,y3,现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.

同时掷两枚质地均的骰子,则两枚骰子向上的点数之和为7的概率是【 】

为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为【 】

同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是【 】

不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其它差别.从袋子中随机取出1个球,则它是绿球的概率是________.

2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情。小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得。小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同。小冰先从甲口袋中随机掉出一个球,小雪再从乙口袋中随机操出一个球,若两球编号之和为奋数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.