问答题(2012年广东省

观察下列等式:

第1个等式:a1=1/(1×3)=1/2×(1-1/3);

第2个等式:a2=1/(3×5)=1/2×(1/3-1/5);

第3个等式:a3=1/(5×7)=1/2×(1/5-1/7);

第4个等式:a4=1/(7×9)=1/2×(1/7-1/9);

请解答下列问题:

(1)按以上规律列出第5个等式:a5=__________________;

(2)用含有n的代数式表示第n个等式:an=________________=________________(n为正数);

(3)求a1+a2+a3+⋯+a100的值.

答案解析

根据观察知答案分别为:(1) 1/(9×11)=1/2×(1/9-1/11)(2) 1/((2n-1)×(2n+1))=1/2×(1/(2n-1)-1/(2n+1));(3)a_1+a2+a3+⋯+a100=1/2×(1-1/3)+1/...

查看完整答案

讨论

为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目。经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为________________.

如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋了数的2倍,则a=______;(2)设甲盒中都是黑子,共m(m>2)个,乙盒中都是白子,共2m个,嘉嘉从甲盒拿出a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多________个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有x(0<x<a)个白子,此时乙盒中有y个黑子,则y/x的值为______.

整式3(1/3-m)的值为p.(1)当m=2时,求p的值;(2)若p的取值范围如图所示,求m的负整数值.

定义一种新运算n∙xn-1dx=an-bn,例如2xdx=k²-n²,若-x-2dx=-2,则m=【 】

先化简,再求值:(1+2/(a+1))÷(a2+6a+9)/(a+1),其中a=√3-3.

若代数式x+1的值为6,则x等于【 】

已知x2+2x-2=0,求代数式x(x+2)+ (x+1)2的值.

小朱要到距家 1500 米的学校上学,一天,小朱出发 10 分钟后,小朱的爸爸立即去追小朱,且在距离学校 60 米的地方追上了他。已知爸爸比小朱的速度快 100 米/分,求小朱的速度。若设小朱速度是x米/分,则根据题意所列方程正确的是【 】

先化简,再求值:(x/(x-1)-1)÷(x²+2x+1)/(x²-1),其中x=2.

下列运算正确的是【 】

阅读下列材料:1×2=1/3·(1×2×3-0×1×2),2×3=1/3·(2×3×4-1×2×3),3×4=1/3·(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=1/3×3×4×5=20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+⋯+10×11(写出过程);(2) 1×2+2×3+3×4+n×(n+1)=____________;(3) 1×2×3+2×3×4+3×4×5+⋯+7×8×9=____________.

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.

发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和,探究:设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确。

按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是【 】

观察下列算式,用你所发现的规律得出22015的末位数字是【 】21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…

如图,抛物线y=-5/4 x2+17/4 x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点0,点C重合的情况),连接CM,BN,当t为何值时,四边形BCN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

阅读下列材料:1×2=1/3·(1×2×3-0×1×2),2×3=1/3·(2×3×4-1×2×3),3×4=1/3·(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=1/3×3×4×5=20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+⋯+10×11(写出过程);(2) 1×2+2×3+3×4+n×(n+1)=____________;(3) 1×2×3+2×3×4+3×4×5+⋯+7×8×9=____________.

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.

按下面程序计算:输入x=3,则输出的答案是________.输入x → 立方 → -x → ÷2 → 答案

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.