单项选择(2017年广东省深圳市

下面哪一个是假命题【 】

A、五边形的外角和为360°

B、切线垂直于经过切点的半径

C、(3,-2)关于y轴的对称点为(-3,2)

D、抛物线y=x²-4x+2017的对称轴为直线x=2

答案解析

C

【解析】

(3,-2)关于y轴的对称点为(-3,-2),关于原点的对称点为(-3,2);

讨论

下列命题是真命题的个数有【 】①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x-ay=3的一个解,则a=-1④若反例函数y=-3/x的图像上有两点(1/2,y1),(1,y2),则y1≤y2.

下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有【 】

下列命题中,为真命题的是【 】(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形

下列命题是真命题的有 【 】①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.

下列命题正确的是【 】

下面命题正确的是【 】

二次函数y=ax²+bx+c 图象如图,下列正确的个数为【 】①bc>0;②2a-3c<0;③2a+b>0;④ax²+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.

如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有______.

某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高 20%进行销售,进货价少于 2080元,销售额要大于 2460元,求有几种方案?

如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为 E,与y 轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则△EFG的面积与△ACD的面积是否存在8倍的关系?若有请直接写出F点的坐标.

已知二次函数y=x2+mx+m2-3(m为常数,m>0)的图像经过点P(2,4).(1)求m的值:(2)判断二次函数y=x2+mx+m2-3的图像与x轴交点的个数,并说明理由.

李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?

如图,点P(a,3)在抛物线C:y=4-(6-x)2上,且在C的对称轴右侧. (1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P',C',平移该胶片使C'所在抛物线对应的函数恰为y=-x2+6x-9.求点P'移动的最短路程.

下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。用函数观点认识一元二次方程根的情况:我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图像(称为抛物线)与x轴交点的横坐标,抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点,与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根,因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(-b/2a,(4ac-b2)/4a)和一元二次方程根的判别式∆=b2-4ac,分a>0和a<0两种情况进行分析:(1) a>0时,抛物线开口向上.①当∆=b2-4ac>0时,有4ac-b2<0.∵a>0,∴顶点纵坐标(4ac-b2)/4a<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图).②当∆=b2-4ac=0时,有4ac-b2=0.∵a>0,∴顶点纵坐标(4ac-b2)/4a=0∴顶点在x轴上,抛物线与x轴有一个交点(如图).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当∆=b2-4ac<0时,.....(2) a<0时,抛物线开口向下……任务:(1)上面小论文中的分析过程,主要运用的数学思想是______(从下面选项中选出两个即可);A.数形结合 B.统计思想 C.分类讨论 D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,∆<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为__________.

如图,二次函数y=-1/4 x2+3/2 x+4的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图像上的一个动点,高点P的横坐标为m,过点P作PD⊥x轴于点D,作直线BC交PD于点E. (1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过P作直线l//AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CD=FD,若存在,请直接写出m的值;若不存在,请说明理由.

如图1,抛物线y=ax2+2x+c经过点A(-1,0),C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D. (1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当PD/AD的值最大且△APQ是直角三角形时,求点Q的横坐标; (4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI//y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标。

单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x-h)2+k(a<0).示意图某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m 0 2 5 8 11 14竖直高度y/m 20.00 21.40 22.75 23.20 22.75 21.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x-h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=-0.04(x-9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2,(填“>”“=”或“<”).

在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.

二次函数y=ax²+bx+c (a≠0)的图像如图所示,下列说法正确的个数是【 】①a>0;②b>0;③c<0;④b²- 4ac>0.

已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0 (m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n (0<n<m)有两个整数根,这两个整数根是【 】