单项选择(2011年广东省深圳市

下列命题是真命题的个数有【 】

①垂直于半径的直线是圆的切线

②平分弦的直径垂直于弦

③若是方程x-ay=3的一个解,则a=-1

④若反例函数y=-3/x的图像上有两点(1/2,y1),(1,y2),则y1≤y2.

A、1个

B、2个

C、3个

D、4个

答案解析

B

讨论

如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD连接AC,OD(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F,若F为AC的中点,求证:直线CE为⊙O的切线。

已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则 OP=【 】

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

如图,已知⨀O的半径为2,AB为直径,CD为弦. AB与CD交于点M,将弧CD沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是⨀O的切线;(3)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交弧BC于点F (F与B,C不重合).问GE⋅GF是否为定值?如果是,求出该定值;如果不是,请说明理由.

如图,线段AB是⨀O的直径,弦CD⊥AB于点H,点M是(CBD) ̂上任意一点,AH=2,CH=4.(1)求⨀O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE⋅HF的值.

如图,△ABC内接于☉O中,BC=2,AB=AC,点D为弧AC上的动点,且cosB=√10/10.(1)求AB的长度;(2)如图(1),在点D运动的过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE 的值;若变化,请说明理由.(3)如果(2),在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.

如图,AB是⨀O的直径,点C是⨀O上异于A,B的点,连接AC,BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC. (1)求证:DC是⨀O的切线;(2)若OA/OD=2/3,BE=3,求DA的长.

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?

某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个,下列方程正确的是【 】

广东省二元一次方程组

山西省二元一次方程组

我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒。已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价。

荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元(每次两种荔枝的售价都不变).(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共 12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

已知a+2b=10/3,3a+4b=16/3,则a+b的值为_________.

若+|b+1|=0,则(a+b)2020=_________.

已知x=5-y,xy=2,计算3x+3y-4xy的值为_________.

《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?"题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的2/3,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为【】

如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为________.

在平面直角坐标系xOy中,若反比例函数y=k/x(k≠0)的图像经过点A(1,2)和点B(-1,m),则m的值为______.

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】

如图,一次函数y=kx+b的图像与x轴正半轴相交于点C,与反比例函数y=-2/x的图像在第二象限相交于点A(-1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.

根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(㎡)的反比例函数,其函数图象如图所示,当S=0.25㎡时,该物体承受的压强p的值为______Pa.

若反比例函数y=k/x(k≠0)的图像经过点(2,-3),则它的图像也一定经过的点是【 】

如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k/x (k≠0)的图象交于第二、四象限的点A(-2,a)和点B(b,-1),过A点作x轴的垂线,垂足为点C,ΔAOC的面积为4. (1)分别求出a和b的值;(2)结合图象直接写出mx+n>k/x中x的取值范围;(3)在y轴上取点P,使PB-PA取得最大值时,求出点P的坐标.

如图,点A是反比例函数y=3/x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为_______.

如图,一次函数y=x+1的图象与反比例函数y=k/x的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k/x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k/x的图象没有公共点.

如图,在ΔABC中,AB=AC,点A在反比例函数y=k/x(k>0,x>0)的图象上,点B,C在x轴上,OC=1/5 OB,延长AC交y轴于点D,连接BD,若ΔBCD的面积等于1,则k的值为_________.