如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.
(1)求证:DE与⊙A相切;
(2)若∠ABC=60°,AB=4,求阴影部分的面积.
如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.
(1)求证:DE与⊙A相切;
(2)若∠ABC=60°,AB=4,求阴影部分的面积.
(1)证明:连接AE∵四边形ABCD是平行四边形∴AD=BC,AD//BC∴∠DAE=∠AEB∵AE=AB∴∠AEB=∠ABC∴∠DAE=∠ABC∴ΔAED≌ΔBAC∴∠DEA=∠CAB∵∠CAB=90°∴∠DEA=90°∴DE⊥AE∵AE是⊙A的半径∴DE与⊙A相切 (2)解:∵∠ABC=60°,AB=AE∴ΔABE是等边三角形∴AE=BE,∠EAB=60°∵∠CAB=90°∴∠CAE=90°-∠EAB=90°-60°=30°∠ACB=90°-∠B=90°-60°=...
查看完整答案如图,射线AB与⊙O相切于点B,经过圆心O的射线AC与⊙O相交于点D、C,连接BC,若∠A=40°,则∠ACB=____°.
已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则 OP=【 】
如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.
如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B. (1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:△DCF是等腰三角形.
如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】
如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=√7,则菱形ABCD的边长是【 】
如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=______°;若△AEF的面积等于1,则AB的值是______.
如图,在▱ABCD中,AC、BD交于点O,点E、F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC.求证:四边形EBFD是菱形.
由几个大小相同的正方形组成的几何图形如图,则它的俯视图是【 】
如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】
如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.
一把直尺、60°的直角板和光盘如图摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是【 】
如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】
如图,ABAB是⨀O的直径,C,D是⨀O上两点,C是的中点.过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⨀O的切线;(2)若DC/DF=,求cos∠ABD的值.
如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.
如图,FA、GB、HC、ID、JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______.
如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.