填空题(2022年海南省

如图,射线AB与⊙O相切于点B,经过圆心O的射线AC与⊙O相交于点D、C,连接BC,若∠A=40°,则∠ACB=____°.

答案解析

25

讨论

如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB,AD于点F,G,DF与AE交于点H.并与⨀A交于点K,连接HG,HC.给出下列四个结论,其中正确的有________(填写所有正确结论的序号)(1) H是FK的中点; (2) △HGD≅△HEC;(3) S△AHG:S△DHC=9:16; (4) DK=7/5

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】

如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD. (1)求证:AD=CD;(2)若AB=4,BF=5,求sin⁡∠ BDC的值.

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B. (1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:△DCF是等腰三角形.

如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.

如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.

一个10边形的内角和等于【 】

下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.

如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是【 】

如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为【 】

下图是一个由5个相同的正方体组成的立体图形,它的主视图是【 】

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是【 】

如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径 作(EF) ̂,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为__________.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.

如图,FA、GB、HC、ID、JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______.

如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.

如图,等边△ABC的三个顶点都在⨀O上,AD是⨀O的直径.若OA=3,则劣弧BD的长是【 】

已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.

如图,正六边形ABCDEF内接于⨀O.点M在(AB) ̂上则∠CME的度数为【 】

某款“不倒翁”(左图)的主视图(右图)中,PA,PB分别与(AMB) ̂所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则(AMB) ̂的长是【 】

如图,△ABC内接于⨀O,AD是⨀O的直径,若∠B=20°,则∠CAD的度数是【 】

如图,△ABC内接于☉O中,BC=2,AB=AC,点D为弧AC上的动点,且cosB=√10/10.(1)求AB的长度;(2)如图(1),在点D运动的过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE 的值;若变化,请说明理由.(3)如果(2),在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.