如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.
(1)求证:BD=ED;
(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.
如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.
(1)求证:BD=ED;
(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.
(1)∵四边形ABCD是圆的内接四边形,∴∠A+∠BCD=180°.∵∠DCE+∠BCD=180°∴∠A=∠DCE.∵∠1=∠2,∴=∴AD=CD.∴在△ABD和△CED中,∴△ABD≅△CED∴BD=ED.(2)过点D作DM⊥BE,垂足为...
查看完整答案如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.
如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.
如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.
如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=_______cm.
如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为【 】
如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】
如图,ABAB是⨀O的直径,C,D是⨀O上两点,C是的中点.过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⨀O的切线;(2)若DC/DF=,求cos∠ABD的值.
如图,AB为⨀O的弦,D,C为弧ACB的三等分点,AC//BE. (1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.
如图,直角梯形纸片ABCD中,AD//BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.
如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF, ∠BFC=90°,若EF/AB,AB=4√3,EF=10,则AE的长为________.
如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】
如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=______.
如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为______cm.
如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F,求∠C和∠E的度数.