问答题(2020年山西省

如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F,求∠C和∠E的度数.

答案解析

连接OB.∵AB与⊙O相切于点B,∴OB⊥AB.∴∠OBA=90°.∵四边形OABC是平行四边形,∴AB//OC∴∠BOC=∠OBA=90°∵OB=OC,∴∠C=∠OBC=1/2 (180°-∠BOC)=1/2×(...

查看完整答案

讨论

如图,在▱ABCD中,AD=5,AB=12,sinA=4/5.过点D作DE⊥AB,垂足为E,则sin∠BCE=________.

如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF, ∠BFC=90°,若EF/AB,AB=4√3,EF=10,则AE的长为________.

如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G. (1) 当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2) 当CG=2时,求AE的长;(3) 当点E从点A向右运动到点B时,求点G运动路径的长度.

如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是__________(写出一个即可)。

如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=4/5,求BF和AD的长.

如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于________.

阅读短文,解决问题.如果一个三角形和一个菱形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如图(1),菱形AEFD为△ABC的“亲密菱形”.如图(2),在△ABC中,以点A为圆心,以任意长为半径作弧,交AB、AC于点M、N,再分别以M、N为圆心,以大于1/2 MN的长为半径作弧,两弧交点于P,作射线AP,交BC于点F,过点F作FD//AC,FE//AB.(1)求证:四边形AEFD是△ABC的“亲密菱形”;(2)当AB=6,AC=12,∠BAC=45°时,求菱形AEFD的面积.

已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个【】。①△BEC≌△AFC;②△CFE为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF/EG=1/3.

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

根据所标数据,下列一定为平行四边形的是【 】

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是________.

探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、1/2倍、k倍。(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”)。(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?同学们有以下思路:①设新矩形长和宽为x,y,则依题意有x+y=10,xy=12,得x2-10x+12=0,再探究根的情况;根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的1/2倍;②如图也可用反比例函数与一次函数证明l1:y=-x+10 ,l2:y=12/x.那么,a.是否存在一个新矩形为原矩形周长和面积的2倍?________.b.请探究是否有一新矩形周长和面积为原矩形的1/2,若存在,用图像表达:c.请直接写出当结论成立时k的取值范围:____________.

如图,O为正方形ABCD对角线AC的中点,ΔACE为等边三角形.若AB=2,则OE的长度为【 】

如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN〦EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.

如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=______°;若△AEF的面积等于1,则AB的值是______.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE. (1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=______.

如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.

如图1(左),将一个正六边形各边延长,构成一个正六角星形 AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形 A1F1B1D1C1E1,如图2(中)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2D2C2E2,如图3(右)中阴影部分,如此下去…,则正六角星形 A4F4B4D4C4E4的面积为________.

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

如图所示的几何体的主视图是【 】

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是【 】

如图所示,是一个由若干个相同的小正方体组成的几何体的主视图(左)和俯视图(右),则能组成这个几何体的小正方体的个数最少是______个。

如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行______分钟可使渔船到达离灯塔距离最近的位置.

如图所示的物体是一个几何体,其主视图是【 】