单项选择(2022年河北省

根据所标数据,下列一定为平行四边形的是【 】

A、

B、

C、

D、

答案解析

D

【解析】

平行四边形对角相等,故A错误;

一组对边平行不能判断四边形是平行四边形,故B错误;

三边相等不能判断四边形是平行四边形,故C错误;

一组对边平行且相等的四边形是平行四边形,故D正确;

讨论

如图,点B是反比例函数y=8/x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C,反比例函数y=k/x(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG. (1)填空:k=_________;(2)求ΔBDF的面积;(3)求证:四边形BDFG为平行四边形.

菱形的两条对角线长分别是6和8,则此菱形的周长是【 】

如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为【 】

如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是【 】

如图,在▱ABCD中AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________(结果保留π).

已知:如图,在四边形ABCD中,AB//CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.

如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=________.

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

如图,在平行四边形ABCD中,将△AB' C沿着AC所在的直线翻折得到△AB' C,B'C交AD于点E,连接B'D.若∠B=60°,∠ACB=45°,AC=.则B'D的长是【 】

如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=15°,过点D作DF⊥CM,垂足为F若DF=,则对角线BD的长为________(结果保留根号)

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE. (1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是_____,位置关系是______;(2)问题探究:如图②,ΔAO'E是将图①中的ΔAOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断ΔPQB的形状,并证明你的结论;(3)拓展延伸:如图③,ΔAO'E是将图①中的ΔAOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求ΔPQB的面积.

木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.

如图,直角梯形纸片ABCD中,AD//BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.

如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.

如图,在矩形ABCD中,线段EF,GH分别平行于AD,AB,它们相交于点P,点P1,P2分别在线段PF,PH上,PP1=PG,PP2=PE,连接P1 H,P2 F,P1 H与P2 F交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b. (1)四边形EBHP的面积______四边形GPFD的面积(填“>”、“=”或“<”);(2)求证:△P1 FQ∼△P2 HQ;(3)设四边形PP1 QP2的面积为S1,四边形CFQH的面积为S2,求S1/S2 的值.

如图,将▱ABCD绕点A逆时针旋转到▱A'B'C'D'的位置,使点B'落在BC上,B'C'与CD交于点E,若AB=3,BC=4,BB'=1,则CE的长为______.

如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】

如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.

如图为主视图方向的几何体,它的俯视图是【 】

如图所示的几何体的主视图是【 】

如图所示,是一个由若干个相同的小正方体组成的几何体的主视图(左)和俯视图(右),则能组成这个几何体的小正方体的个数最少是______个。

如图所示的物体是一个几何体,其主视图是【 】

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.图①图②(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙 - h甲 = h,已知h(米)关于注水时间t(小时)的函数图像如图③所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.图③

如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点BC为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE则下列结论错误的是【 】

如图,AB是⊙O的弦,C是AB的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______cm.

在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).① ②(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.③ ④①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.

下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.

在矩形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的有【 】个。 ①tan∠GFB=1/2 ②MN=NC ③CM/EG=1/2 ④S四边形GBEM=(√5+1)/2