问答题(2021年江苏省苏州市

如图,在矩形ABCD中,线段EF,GH分别平行于AD,AB,它们相交于点P,点P1,P2分别在线段PF,PH上,PP1=PG,PP2=PE,连接P1 H,P2 F,P1 H与P2 F交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.

 

(1)四边形EBHP的面积______四边形GPFD的面积(填“>”、“=”或“<”);

(2)求证:△P1 FQ∼△P2 HQ;

(3)设四边形PP1 QP2的面积为S1,四边形CFQH的面积为S2,求S1/S2 的值.

答案解析

(1)∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°.∵GH//AB,∴∠B=∠GHC=90°,∠A=∠PGD=90°.∵EF//AD,∴∠PGD=∠HPF=90°,∴四边形PFCH为矩形.同理可得:四边形AGPE,GDFP,EPHB均为矩形.∵AG=a,AE=b,AG:GD=AE:EB=1:2,∴PE=a,PG=b,GD=PF=2a,EB=PH=2b.∴四边形EBHP的面积=PE∙PH=2ab,四边形GPFD的面积=PG∙PF=2ab.∴四边形EBHP的面积=四边形GPFD的面积.(2) ∵PP1=PG,PP2=...

查看完整答案

讨论

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.

如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.

探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、1/2倍、k倍。(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”)。(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?同学们有以下思路:①设新矩形长和宽为x,y,则依题意有x+y=10,xy=12,得x2-10x+12=0,再探究根的情况;根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的1/2倍;②如图也可用反比例函数与一次函数证明l1:y=-x+10 ,l2:y=12/x.那么,a.是否存在一个新矩形为原矩形周长和面积的2倍?________.b.请探究是否有一新矩形周长和面积为原矩形的1/2,若存在,用图像表达:c.请直接写出当结论成立时k的取值范围:____________.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.

如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】

一个小球在如图所示的方格地砖上任意动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.

4张相同的卡片上分别写有数字0、1、-2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来:再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为______.(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由)

如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是_______.

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.

如图,在▱ABCD中AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________(结果保留π).

已知:如图,在四边形ABCD中,AB//CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.

如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=________.

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是__________(写出一个即可)。

如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=4/5,求BF和AD的长.

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE. (1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是_____,位置关系是______;(2)问题探究:如图②,ΔAO'E是将图①中的ΔAOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断ΔPQB的形状,并证明你的结论;(3)拓展延伸:如图③,ΔAO'E是将图①中的ΔAOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求ΔPQB的面积.

图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是【 】

如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=_______.

人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是_______m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

如图,已知∠1=70°,如果CD//BE,那么∠B的度数为【 】

将下图中的箭头缩小到原来的1/2,得到的图形是【 】。

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是【 】

如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行______分钟可使渔船到达离灯塔距离最近的位置.

如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为【 】

如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12n mile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是________n mile(≈1.73,结果用四舍五入法精确到0.1).