问答题(2020年贵州省贵阳市

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.

 

(1)求证:四边形AEFD是平行四边形;

(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

答案解析

(1)∵四边形ABCD是矩形,∴AD//BC,AD=BC.∵CF=BE∴CF+EC=BE+EC,即EF=BC.∴EF=AD,∴四边形AEFD是平行四边形.(2)如图,连接ED∵四边形ABCD是矩形∴∠B=90°在RtΔABE中,AB=4,BE=2,∴由勾股定理得,EA2=16+4...

查看完整答案

讨论

2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生,根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图 (1)本次共调查的学生人数为_____,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是_____,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.

如图,在 的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.

如图,ΔABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为_______.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.

如图,点A是反比例函数y=3/x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为_______.

化简x(x-1)+x的结果是______.

已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0 (m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n (0<n<m)有两个整数根,这两个整数根是【 】

如图,RtΔABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于1/2 DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为【 】

已知a<b,下列式子不一定成立的是【 】

在矩形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的有【 】个。 ①tan∠GFB=1/2 ②MN=NC ③CM/EG=1/2 ④S四边形GBEM=(√5+1)/2

如图,O为正方形ABCD对角线AC的中点,ΔACE为等边三角形.若AB=2,则OE的长度为【 】

如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN〦EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.

如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=______.

如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为【 】

如图,点B是反比例函数y=8/x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C,反比例函数y=k/x(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG. (1)填空:k=_________;(2)求ΔBDF的面积;(3)求证:四边形BDFG为平行四边形.

菱形的两条对角线长分别是6和8,则此菱形的周长是【 】

如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为________.

如图,在▱ABCD中AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________(结果保留π).

已知:如图,在四边形ABCD中,AB//CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.

在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).① ②(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.③ ④①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.

为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,DE是正五边形的五个顶点),则图中∠A的度数是度______°.

下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.

下列图形是正方体展开图的个数为【 】

如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是【 】

如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为【 】

在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B',当B'D//AC时,∠BCD的度数为______.

如图是某几何体的展开图,该几何体是【 】

下列多边形中,内角和最大的是【 】

如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是【 】