单项选择(2020年甘肃省武威市

如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为【 】

A、4

B、4

C、3

D、2

答案解析

A

讨论

如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1) ∠FDG=______°;(2)若DE=1,DF=2√2,则MN=________.

如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=72。在以上4个结论中,正确的有【 】个.

如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD²=FQ⋅AC.其中正确的结论的个数是【 】

如图,正方形ABCD 的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA²=OE·OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=13/16,其中正确结论的个数是【 】

如图,四边形ACDF 是正方形,∠CEA和∠ABF 都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是______.

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是________.

如图,O为正方形ABCD对角线AC的中点,ΔACE为等边三角形.若AB=2,则OE的长度为【 】

如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN〦EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.

如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=______.

如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为________.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE. (1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为______cm.

问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将RtΔABE绕点B按顺时针方向旋转90°,得到ΔCBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.猜想证明:(1)试判断四边形BE' FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.

性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为_________. 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为_________;(2)如图(2),在四边形EFGH中,EF=EG=EH.在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)

如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】

如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.

在矩形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的有【 】个。 ①tan∠GFB=1/2 ②MN=NC ③CM/EG=1/2 ④S四边形GBEM=(√5+1)/2

如图是某几何体的展开图,该几何体是【 】

下列多边形中,内角和最大的是【 】

如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=________.

《淮南子·天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B、A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C、B两点间的距离为10步,在点C处立一根杆,取 CA的中点D,那么直线DB表示的方向为东西方向。(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示。使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在图中,确定了直线DB表示的方向为东西方向,根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=______,D是CA的中点,∴CA⊥DB(__________)(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.

已知关于x的一元二次方程x2-4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是【 】

如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为【 】

下图是一个由5个相同的正方体组成的立体图形,它的主视图是【 】