填空题(2018年广东省深圳市

如图,四边形ACDF 是正方形,∠CEA和∠ABF 都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是______.

答案解析

8∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,又∵∠AEC=∠FBA,AC=AF,∴...

查看完整答案

讨论

如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF【 】

如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把ΔADN绕点A顺时针旋转90°得到ΔABE. (1)求证:ΔAEM≌ΔANM.(2)若BM=3,DN=2,求正方形ABCD的边长.

已知:如图,E、F在AC上,AD//CB且AD=CB,∠D=∠B.求证:AE=CF.

如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.

如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.

如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.

如图,点E、F在线段BC上,AB//CD,∠A=∠D,BE=CF,证明:AE=DF.

如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示 线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.

如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是【 】

如图,四边形ABCD中,AD//BC,∠ABC=90°,∠C=30°,AD=3,AB=2√3,DH⊥BC于点H,将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4√3. (1)求证:△PQM≅△CHD;(2) △PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2点K在BH上,且BK=9-4√3.若△PQM右移的速度为每秒1个单位长,绕点D旅转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).

如图,正方形ABCD 的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA²=OE·OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=13/16,其中正确结论的个数是【 】

如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为【 】

如图,点O是正方形,ABCD的中心. (1)用直尺和圆规在正方形内部作一点E (异于点O),使得EB=EC; (保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.

如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为________.

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是________.

如图,O为正方形ABCD对角线AC的中点,ΔACE为等边三角形.若AB=2,则OE的长度为【 】

如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN〦EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.

如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=______°;若△AEF的面积等于1,则AB的值是______.

如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1) ∠FDG=______°;(2)若DE=1,DF=2√2,则MN=________.

如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=72。在以上4个结论中,正确的有【 】个.

如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE. (1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm ,菱形的边长AB=20cm ,则∠DAB的度数是【 】

如图,在菱形ABCD中,∠A=30°,取大于1/2 AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为_________.

如图,点B是反比例函数y=8/x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C,反比例函数y=k/x(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG. (1)填空:k=_________;(2)求ΔBDF的面积;(3)求证:四边形BDFG为平行四边形.

菱形的两条对角线长分别是6和8,则此菱形的周长是【 】

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE. (1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是_____,位置关系是______;(2)问题探究:如图②,ΔAO'E是将图①中的ΔAOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断ΔPQB的形状,并证明你的结论;(3)拓展延伸:如图③,ΔAO'E是将图①中的ΔAOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求ΔPQB的面积.

如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为【 】

如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是【 】