问答题(2012年广东省深圳市

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE.

(1)求证:四边形AFCE为菱形;

(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

答案解析

(1)∵四边形ABCD是矩形,∴AD//BC,∴∠AEF=∠EFC,由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF,∴CF=CE,∴AF=CF=CE=AE,∴四边形AFCE为菱形.(2)a、b、c三者之间的数量关...

查看完整答案

讨论

如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是__________(写出一个即可)。

如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=4/5,求BF和AD的长.

如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于________.

图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果。图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图3镶嵌得到图④,将图④着色后再次镶嵌便得到图①,则图④中∠ABC的度数是________.

如图,在四边形ABCD中,AB//CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:ΔABF≌ΔCDE:(2)连接AE,CF,已知______(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)

根据所标数据,下列一定为平行四边形的是【 】

如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=√7,则菱形ABCD的边长是【 】

如图,在▱ABCD中,AC、BD交于点O,点E、F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC.求证:四边形EBFD是菱形.

阅读短文,解决问题.如果一个三角形和一个菱形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如图(1),菱形AEFD为△ABC的“亲密菱形”.如图(2),在△ABC中,以点A为圆心,以任意长为半径作弧,交AB、AC于点M、N,再分别以M、N为圆心,以大于1/2 MN的长为半径作弧,两弧交点于P,作射线AP,交BC于点F,过点F作FD//AC,FE//AB.(1)求证:四边形AEFD是△ABC的“亲密菱形”;(2)当AB=6,AC=12,∠BAC=45°时,求菱形AEFD的面积.

已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个【】。①△BEC≌△AFC;②△CFE为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF/EG=1/3.

如图,正方形ABCD 的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA²=OE·OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=13/16,其中正确结论的个数是【 】

如图,四边形ACDF 是正方形,∠CEA和∠ABF 都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是______.

如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=______.

如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为______cm.

问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将RtΔABE绕点B按顺时针方向旋转90°,得到ΔCBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.猜想证明:(1)试判断四边形BE' FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.

性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为_________. 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为_________;(2)如图(2),在四边形EFGH中,EF=EG=EH.在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)

如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为【 】

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE. (1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是_____,位置关系是______;(2)问题探究:如图②,ΔAO'E是将图①中的ΔAOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断ΔPQB的形状,并证明你的结论;(3)拓展延伸:如图③,ΔAO'E是将图①中的ΔAOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求ΔPQB的面积.

如图,点O是正方形,ABCD的中心. (1)用直尺和圆规在正方形内部作一点E (异于点O),使得EB=EC; (保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.

如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧(AB) ̂的中点,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为2√2时,阴影部分的面积为【 】

下列图形中是轴对称图形的是【 】

下列哪个图形是正方体的展开图【 】

中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是【 】

如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.

若一个扇形的圆心角为60°,面积为π/6 cm2,则这个扇形的弧长为_________cm(结果保留π).

若一个多边形的内角和是540°,则该多边形的边数为【 】

如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.

如图,在 的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.

如图是由 个小正方体组合成的几何体,该几何体的俯视图是【 】