单项选择(2020年广东省

若一个多边形的内角和是540°,则该多边形的边数为【 】

A、4

B、5

C、6

D、7

答案解析

B

讨论

在半面直角坐标系中,点(3,2)关于x轴对称的点的坐标为【 】

一组数据2,4,3,5,2的中位数是【 】

广东省相反数

如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求ΔPAC面积的最大值及此时点P的坐标.

如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把ΔADN绕点A顺时针旋转90°得到ΔABE. (1)求证:ΔAEM≌ΔANM.(2)若BM=3,DN=2,求正方形ABCD的边长.

如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=_________时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:___________________________.

习近平总书记于2019年8月在兰州考察时说黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.下图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图. 请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了_________天;(2)这七年的全年空气质量优良天数的中位数是_________天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.

2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家"5A" 级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区:C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).

图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.α的度数β的度数CD的长度仪器CD(EF)的高度测量数据31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin⁡3 1°≈0.52,cos⁡3 1°≈0.86,tan⁡3 1°≈0.60,sin⁡4 2°≈0.67,cos⁡4 2°≈0.74,tan⁡4 2°≈0.90)

在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).① ②(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.③ ④①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.

为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,DE是正五边形的五个顶点),则图中∠A的度数是度______°.

如图,直线c与直线a、b都相交,若a//b,∠1=55°,则∠2=【 】

下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.

如图,AB是⨀O的直径,点C是⨀O上异于A,B的点,连接AC,BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC. (1)求证:DC是⨀O的切线;(2)若OA/OD=2/3,BE=3,求DA的长.

下列图形是正方体展开图的个数为【 】

如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是【 】

如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为【 】

一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若ACB=60°,则劣弧AB的长是【 】

在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B',当B'D//AC时,∠BCD的度数为______.

下列多边形中,内角和最大的是【 】

如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为【 】

如图1(左),将一个正六边形各边延长,构成一个正六角星形 AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形 A1F1B1D1C1E1,如图2(中)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2D2C2E2,如图3(右)中阴影部分,如此下去…,则正六角星形 A4F4B4D4C4E4的面积为________.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

一个10边形的内角和等于【 】

正八边形的每个内角为【 】

各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+1/2b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=_______.

某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?

如图,抛物线y=-5/4 x2+17/4 x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点0,点C重合的情况),连接CM,BN,当t为何值时,四边形BCN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

不等式3x - 9 > 0的解集是____________.