单项选择(2021年广东省广州市

一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若ACB=60°,则劣弧AB的长是【 】

A、8πcm

B、16πcm

C、32πcm

D、192πcm

答案解析

B由题意得:CA和CB分别与⨀O相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴劣弧AB=(120π×24)/180=16π(cm...

查看完整答案

讨论

如图,△ABC内接于☉O中,BC=2,AB=AC,点D为弧AC上的动点,且cosB=√10/10.(1)求AB的长度;(2)如图(1),在点D运动的过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE 的值;若变化,请说明理由.(3)如果(2),在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】

如图,ABAB是⨀O的直径,C,D是⨀O上两点,C是的中点.过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⨀O的切线;(2)若DC/DF=,求cos∠ABD的值.

如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.

如图,FA、GB、HC、ID、JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______.

如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.

如图,AB是⨀O的直径,点C是⨀O上异于A,B的点,连接AC,BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC. (1)求证:DC是⨀O的切线;(2)若OA/OD=2/3,BE=3,求DA的长.

如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为【 】

如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点EF分别在线段BC、AD上,且EF//CD,AB=AF,CD=DE.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.

如图,在△ABC中,D,E分别为BC,AC上的点,将△CDE沿DE折叠,得到△FDE,连接BF,CF, ∠BFC=90°,若EF/AB,AB=4√3,EF=10,则AE的长为________.

如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=√7,则菱形ABCD的边长是【 】

如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE. (1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

把下列图标折成一个正方体的盒子,折好后与“中”相对的字是【 】

如图,已知a//b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是【 】

如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧(AB) ̂的中点,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为2√2时,阴影部分的面积为【 】

如图,在▱ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA,BC于点P,Q,再分别以P,Q为圆心,以大于1/2 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为__________.

下面立体图形的主视图是【 】

如图,已知线段AB,分别以A、B为圆心,大于1/2 AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为【 】

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点BC为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE则下列结论错误的是【 】

如图,AB是⊙O的弦,C是AB的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______cm.

如图,等边△ABC的三个顶点都在⨀O上,AD是⨀O的直径.若OA=3,则劣弧BD的长是【 】

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.