单项选择(2021年湖北省武汉市

如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】

A、21.9°<α<22.3°

B、22.3°<α<22.7°

C、22.7°<α<23.1°

D、23.1°<α<23.5°

答案解析

B

讨论

如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】

如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD. (1)求证:AD=CD;(2)若AB=4,BF=5,求sin⁡∠ BDC的值.

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B. (1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:△DCF是等腰三角形.

如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.

如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=_______cm.

一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是【 】

如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)

如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=_______.

人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是_______m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

如图,已知∠1=70°,如果CD//BE,那么∠B的度数为【 】

如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是【 】

如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为【 】

如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行°健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C处,观光船到滨海大道的距离CB为200米。当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西40°的方向航行至点D处.此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离。(参考数据:sin40°≈0.64,co40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

如图,利用工具测量角,则∠1的大小为【 】

两个矩形的位置如图所示,若∠1=α,则∠2=【 】

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图(左),已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙0于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图(右),连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留T与根号)

如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为【 】