填空题(2011年广东省

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.

答案解析

25°

讨论

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.

已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.

某款“不倒翁”(左图)的主视图(右图)中,PA,PB分别与(AMB) ̂所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则(AMB) ̂的长是【 】

如图,△ABC内接于⨀O,AD是⨀O的直径,若∠B=20°,则∠CAD的度数是【 】

如图,射线AB与⊙O相切于点B,经过圆心O的射线AC与⊙O相交于点D、C,连接BC,若∠A=40°,则∠ACB=____°.

如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD连接AC,OD(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F,若F为AC的中点,求证:直线CE为⊙O的切线。

已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则 OP=【 】

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

如图,已知⨀O的半径为2,AB为直径,CD为弦. AB与CD交于点M,将弧CD沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是⨀O的切线;(3)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交弧BC于点F (F与B,C不重合).问GE⋅GF是否为定值?如果是,求出该定值;如果不是,请说明理由.

如图,线段AB是⨀O的直径,弦CD⊥AB于点H,点M是(CBD) ̂上任意一点,AH=2,CH=4.(1)求⨀O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE⋅HF的值.

如图,利用工具测量角,则∠1的大小为【 】

两个矩形的位置如图所示,若∠1=α,则∠2=【 】

如图,已知a//b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是【 】

如图,在▱ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA,BC于点P,Q,再分别以P,Q为圆心,以大于1/2 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为__________.

如图,已知线段AB,分别以A、B为圆心,大于1/2 AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为【 】

如图,l1//AB,AC为角平分线,下列说法错误的是【 】

为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上. (1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)

若α=70°,则α的补角的度数是【 】

如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是【 】

如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12n mile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是________n mile(≈1.73,结果用四舍五入法精确到0.1).

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

如图,正六边形ABCDEF内接于⨀O.点M在(AB) ̂上则∠CME的度数为【 】

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.

如图,AB为⊙O的直径,已知∠DCB=20°,则∠DBA为【 】

如图,△ABC内接于☉O中,BC=2,AB=AC,点D为弧AC上的动点,且cosB=√10/10.(1)求AB的长度;(2)如图(1),在点D运动的过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE 的值;若变化,请说明理由.(3)如果(2),在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】