填空题(2021年江苏省南京市

如图,AB是⊙O的弦,C是AB的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______cm.

答案解析

5

讨论

下列图形中,属于中心对称图形的是【 】

下列图形中,既是轴对称图形又是中心对称图形的是【 】

下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是【 】

如图,圆锥的主视图是【 】

如图,线段AB=10,点C,D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA,PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图像大致是【 】

如图,在Rt△ABC中,∠C=90°.AF=EF.若∠CFE=72°.则∠B=______°.

已知关于x的一元二次方程x2-4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.

如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行°健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C处,观光船到滨海大道的距离CB为200米。当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西40°的方向航行至点D处.此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离。(参考数据:sin40°≈0.64,co40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

下图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是【 】

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图,正六边形ABCDEF内接于⨀O.点M在(AB) ̂上则∠CME的度数为【 】

如图,AB为⊙O的直径,已知∠DCB=20°,则∠DBA为【 】

如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点BC为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE则下列结论错误的是【 】

如图,等边△ABC的三个顶点都在⨀O上,AD是⨀O的直径.若OA=3,则劣弧BD的长是【 】

不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,如果是红球,不放回再随机换出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是______.

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

如图,线段AB是⨀O的直径,弦CD⊥AB于点H,点M是(CBD) ̂上任意一点,AH=2,CH=4.(1)求⨀O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE⋅HF的值.

如图,△ABC内接于☉O中,BC=2,AB=AC,点D为弧AC上的动点,且cosB=√10/10.(1)求AB的长度;(2)如图(1),在点D运动的过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE 的值;若变化,请说明理由.(3)如果(2),在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】