单项选择(2021年广东省

如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为【 】

A、√3

B、2√3

C、1

D、2

答案解析

B

讨论

如图,FA、GB、HC、ID、JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______.

如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.

如图,AB是⨀O的直径,点C是⨀O上异于A,B的点,连接AC,BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC. (1)求证:DC是⨀O的切线;(2)若OA/OD=2/3,BE=3,求DA的长.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】

如图,ABAB是⨀O的直径,C,D是⨀O上两点,C是的中点.过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⨀O的切线;(2)若DC/DF=,求cos∠ABD的值.

如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.

如图,射线AB与⊙O相切于点B,经过圆心O的射线AC与⊙O相交于点D、C,连接BC,若∠A=40°,则∠ACB=____°.

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

如图,已知⨀O的半径为2,AB为直径,CD为弦. AB与CD交于点M,将弧CD沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是⨀O的切线;(3)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交弧BC于点F (F与B,C不重合).问GE⋅GF是否为定值?如果是,求出该定值;如果不是,请说明理由.

如图,在 的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.

如图是由 个小正方体组合成的几何体,该几何体的俯视图是【 】

下图是由一个长方体和一个圆锥组成的几何体,它的主视图是【 】

一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是【 】

如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)

如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合).作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数; (2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由; (3)当α=120°,tan⁡∠ DAB=1/3时,请直接写出CE/BE的值.

如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是【 】

如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=_______.

人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是_______m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+1/2b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=_______.

如图,AB是⊙O的弦,C是AB的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______cm.

如图,等边△ABC的三个顶点都在⨀O上,AD是⨀O的直径.若OA=3,则劣弧BD的长是【 】

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点BC为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE则下列结论错误的是【 】