填空题(2020年广东省

如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.

答案解析

1/3

讨论

①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择【 】

要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量,两同学提供了如下间接测量方案(如图1和图2):对于方案I、Ⅱ,说法正确的是【 】方案I①作一直线GH,交AB,CD于点E,F;②利用尺规作∠HFN=∠CFG;③测量∠AEH的大小即可.方案 Ⅱ①作一直线GH,交AB,CD于点E,F;②测量∠AEH和∠CFG的大小;③计算180°-∠AEH-∠CFG即可.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点 C,D的连线交于点E,则(1)AB与CD是否垂直?______(填是”或否")(2)AE=______.

如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE//CB,则∠DAB的度数为【 】

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD干点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.

下图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是【 】

如图,直线m//n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140° ,则∠2的度数是【 】

如图,已知a//b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是【 】

如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧(AB) ̂的中点,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为2√2时,阴影部分的面积为【 】

中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是【 】

如图,线段AB=10,点C,D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA,PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图像大致是【 】

如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径 作(EF) ̂,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为__________.

如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.

若一个扇形的圆心角为60°,面积为π/6 cm2,则这个扇形的弧长为_________cm(结果保留π).

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

二元一次方程组的解为________.

广东省一元一次不等式组

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.