填空题(2021年江苏省苏州市

一个小球在如图所示的方格地砖上任意动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.

答案解析

2/9

讨论

因式分解x2 - 2x+1=__________.

全球平均每年发生的雷电次数约为16000000次,数据16000000科学记数法可表示为________.

如图,线段AB=10,点C,D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA,PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图像大致是【 】

如图,在平行四边形ABCD中,将△AB' C沿着AC所在的直线翻折得到△AB' C,B'C交AD于点E,连接B'D.若∠B=60°,∠ACB=45°,AC=.则B'D的长是【 】

已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是【 】

某公司上半年生产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是【 】

已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】

为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表:则每个班级回收废纸的平均重量为【 】班级 一班 二班 三班 四班 五班废纸重量(kg) 4.5 4.4 5.1 3.3 5.7

已知两个不等于0的实数a,b满足a+b=0.则b/a+a/b等于【 】

如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是【 】

在一个不透明的袋子里,有 2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是______.

一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:______.

现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字 2的卡片的概率是______.

如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是【】

一只不进明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为__________.

下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.

不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是【 】

分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.

在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为【 】

有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式(x2-3xy)/(x2-y2 )+y/(x-y)有意义的(x,y)出现的概率;(3)化简分式(x2-3xy)/(x2-y2 )+y/(x-y),并求使分式的值为整数的(x,y)出现的概率.

在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.

生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂器色或不涂色可表示两个不同的信息. (1)用树状图或列表格的方法,求图③可表示不同信息的总个数:(图中标号1,2表示两个不同位置的小方格,下同) (2)图④为2×2的网格图.它可表示不同信息的总个数为__________; (3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示各人身份信息,若该校师生共492人,则n的最小值为__________.

下列事件中是必然事件的是【 】

下列说法正确的是【 】

有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是【 】

如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是【 】

端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是【 】

学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是【 】

随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“ ”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为【 】

袋子里有4个球,标有 2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是【 】