问答题(2020年江苏省盐城市

木门常常需要雕刻美丽的图案.

(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;

(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.

答案解析

(1)如图,过点P作PE⊥CD,垂足为E ∵P是边长为30cm的正方形模具的中心,∴PE=15cm,同理:A' B'与AB之间的距离为15cm,A'D'与AD之间的距离为15cm,B'C'与BC之间的距离为15cm,∴A'B'=C'D'=200-15-15=170cm,B'C'=A'D'=100-15-15=70cm,∴C_(四边形A'B' C' D')=(170+70)×2=480cm.答:图案的周长为480cm.(2)连接PE、PF、PG,过点P作PQ⊥CD,垂足为Q ∵P是边长为30cm的等边三角形模具的中心,∴PE=PG=PF,∠PG...

查看完整答案

讨论

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、1/2倍、k倍。(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”)。(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?同学们有以下思路:①设新矩形长和宽为x,y,则依题意有x+y=10,xy=12,得x2-10x+12=0,再探究根的情况;根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的1/2倍;②如图也可用反比例函数与一次函数证明l1:y=-x+10 ,l2:y=12/x.那么,a.是否存在一个新矩形为原矩形周长和面积的2倍?________.b.请探究是否有一新矩形周长和面积为原矩形的1/2,若存在,用图像表达:c.请直接写出当结论成立时k的取值范围:____________.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.

如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.

如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.

如图,在矩形ABCD中,线段EF,GH分别平行于AD,AB,它们相交于点P,点P1,P2分别在线段PF,PH上,PP1=PG,PP2=PE,连接P1 H,P2 F,P1 H与P2 F交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b. (1)四边形EBHP的面积______四边形GPFD的面积(填“>”、“=”或“<”);(2)求证:△P1 FQ∼△P2 HQ;(3)设四边形PP1 QP2的面积为S1,四边形CFQH的面积为S2,求S1/S2 的值.

一只不进明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为__________.

江苏省盐城市一元一次不等式组

如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=√7,则菱形ABCD的边长是【 】

如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=______°;若△AEF的面积等于1,则AB的值是______.

如图,在▱ABCD中,AC、BD交于点O,点E、F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC.求证:四边形EBFD是菱形.

如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1) ∠FDG=______°;(2)若DE=1,DF=2√2,则MN=________.

如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=72。在以上4个结论中,正确的有【 】个.

如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD²=FQ⋅AC.其中正确的结论的个数是【 】

如图,正方形ABCD 的边长是3,BP=CQ,连接AQ、DP交于点O,并分别与边CD、BC交于点F、E,连接AE,下列结论:①AQ⊥DP;②OA²=OE·OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=13/16,其中正确结论的个数是【 】

如图,四边形ACDF 是正方形,∠CEA和∠ABF 都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是______.

阅读短文,解决问题.如果一个三角形和一个菱形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如图(1),菱形AEFD为△ABC的“亲密菱形”.如图(2),在△ABC中,以点A为圆心,以任意长为半径作弧,交AB、AC于点M、N,再分别以M、N为圆心,以大于1/2 MN的长为半径作弧,两弧交点于P,作射线AP,交BC于点F,过点F作FD//AC,FE//AB.(1)求证:四边形AEFD是△ABC的“亲密菱形”;(2)当AB=6,AC=12,∠BAC=45°时,求菱形AEFD的面积.

已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个【】。①△BEC≌△AFC;②△CFE为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF/EG=1/3.