填空题(2010年广东省深圳市

如图所示,是一个由若干个相同的小正方体组成的几何体的主视图(左)和俯视图(右),则能组成这个几何体的小正方体的个数最少是______个。

答案解析

9

讨论

如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE. (1)求证:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

下列图形中是轴对称图形但不是中心对称图形的是【 】

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

下列图形既是中心对称又是轴对称图形的是【 】

下列图形中,是轴对称图形的是【 】

把下列图标折成一个正方体的盒子,折好后与“中”相对的字是【 】

观察下列图形,其中既是轴对称又是中心对称图形的是【 】

问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将RtΔABE绕点B按顺时针方向旋转90°,得到ΔCBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.猜想证明:(1)试判断四边形BE' FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.

如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.

性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为_________. 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为_________;(2)如图(2),在四边形EFGH中,EF=EG=EH.在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)