单项选择(2015年广东省深圳市

下列图形既是中心对称又是轴对称图形的是【 】

A、

B、

C、

D、

答案解析

D

【解析】

A、图形旋转 180°后不能与原图形重合,所以此图形不是中心对称图形,是轴对称图形;

B、图形旋转 180°后不能与原图形重合,所以此图形不是中心对称图形,是轴对称图形;

C、图形旋转180°后不能与原图形重合,所以此图形不是中心对称图形,是轴对称图形;

D、图形旋转 180°后能与原图形重合,所以此图形是中心对称图形,也是轴对称图形。

讨论

在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N. (1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.

如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在某个点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1)点C的坐标为(-3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1,并写出点A1的坐标;(2)将原来的R△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.

将如图所示的长方体牛奶包装盒沿某些棱剪开且使六个面连在一起然后铺平则得到的图形可能是【 】

如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是【 】

将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),A(3,0),C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设OQ=t. (I)如图①,当t=1时,求∠O'QA的大小和点O'的坐标:(Ⅱ)如图②,若折叠后重合部分为四边形,O' Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示O'E的长,并直接写出t的取值范围:(Ⅲ)若折叠后重合部分的面积为3√3,则t的值可以是__________(请直接写出两个不同的值即可).

如图,将ΔABC先向右平移3个单位,再绕原点O旋转180°得到ΔA'B'C',则点A的对应点A'的坐标是【 】

如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s,同时,点Q从点A出发,沿AD方向匀速运动,速度为1m/s. PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm^2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ//CD?若存在,求出t的值;若不存在,请说明理由.

在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(-2,0),点Q为点P的“对应点”. ①在图中画出点Q;②连接PQ.交线段ON于点T.求证:NT=1/2 OM.(2) ⨀O的半径为1,M是⨀O上一点,点N在线段OM上,且ON=t(1/2<t<1),若P为⨀O外一点,点Q为点P的“对应点”,连接PQ.当点M在⨀O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).

如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1﹔(2)以边AC的中点O为旋转中心,将△ABC 按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.

下列几何体中,其俯视图与主视图完全相同的是【 】

根据所标数据,下列一定为平行四边形的是【 】

要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量,两同学提供了如下间接测量方案(如图1和图2):对于方案I、Ⅱ,说法正确的是【 】方案I①作一直线GH,交AB,CD于点E,F;②利用尺规作∠HFN=∠CFG;③测量∠AEH的大小即可.方案 Ⅱ①作一直线GH,交AB,CD于点E,F;②测量∠AEH和∠CFG的大小;③计算180°-∠AEH-∠CFG即可.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点 C,D的连线交于点E,则(1)AB与CD是否垂直?______(填是”或否")(2)AE=______.

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD干点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

下面几何体中,是圆锥的为【 】

如图,已知四边形ABCD为等腰梯形,AD//BC,AB=CD,AD=√2,E为CD中点,连接AE,且AE=2√3,∠DAE=30°,作AF⊥AE交BC于F,则BF=【 】

如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积24cm2是的有盖的长方体铁盒.则剪去的正方形的边长为______cm.