问答题(2010年广东省

如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在某个点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1)点C的坐标为(-3,3).

(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1,并写出点A1的坐标;

(2)将原来的R△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.

答案解析

(1)(2)所画图形如下所示,从图中可以看出点A的坐标为(-1,1)

讨论

如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是【 】

如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为【 】

如图,将ΔABC先向右平移3个单位,再绕原点O旋转180°得到ΔA'B'C',则点A的对应点A'的坐标是【 】

如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s,同时,点Q从点A出发,沿AD方向匀速运动,速度为1m/s. PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm^2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ//CD?若存在,求出t的值;若不存在,请说明理由.

如图,四边形ABCO是平行四边形,AO=2,AB=6,点C在x轴的负半轴上,将ABCO绕点A逆时针旋转得到ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=k/x的图像上,则k的值为________.

如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是【 】

将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),A(3,0),C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设OQ=t. (I)如图①,当t=1时,求∠O'QA的大小和点O'的坐标:(Ⅱ)如图②,若折叠后重合部分为四边形,O' Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示O'E的长,并直接写出t的取值范围:(Ⅲ)若折叠后重合部分的面积为3√3,则t的值可以是__________(请直接写出两个不同的值即可).

如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1﹔(2)以边AC的中点O为旋转中心,将△ABC 按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.

如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将ΔADF绕点A顺时针旋转90°得到ΔABG.若DF=3,则BE的长为__________.

如图的四个三角形中,不能由△ABC经过旋转或平移得到的是【 】

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

已知△ABC是直角三角形,∠B=90°,AB=3,BC=5,AE=2√5,连接CE,以CE为底作直角三角形CDE,CD=DE. F是AE边上的一点,连接BD,BF,∠FBD=45°,则AF长为________.

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4√3.将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板AB,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.

如图,△ABC绕点A顺时针旋转45°得到△AB' C'若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于________.

如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1)填空:AD=________(cm),DC=________(cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm²),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=(√6+√2)/4,sin15°=(√6-√2)/4)

如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于点D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°,若AC=a,求CI的长.

如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.

已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,得Rt△ODC,如题1图,连接BC.(1)填空:∠OBC=________°;(2)如题1图,连接AC,作OP⊥AC,垂足为点P,求OP的长度.(3)如题2图,点M,N同时从点O出发,在△OCB边上运动,点M沿O→C→B路径匀速运动,点N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为每秒1.5个单位长度,点N的运动速度为每秒1个单位长度,设运动时间为x s,△OMN的面积为y.求:当x为何值时y取得最大值,最大值为多少?(结果分母可保留根号)

如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼的顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 _____________米(结果保留根号).

在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的⌒EF与BC相切于点D,分别交AB、AC于点E、F. (1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及⌒FE所围成的阴影部分的面积.

在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(-2,0),点Q为点P的“对应点”. ①在图中画出点Q;②连接PQ.交线段ON于点T.求证:NT=1/2 OM.(2) ⨀O的半径为1,M是⨀O上一点,点N在线段OM上,且ON=t(1/2<t<1),若P为⨀O外一点,点Q为点P的“对应点”,连接PQ.当点M在⨀O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).

下列图形中是轴对称图形的是【 】

负数的概念最早出现在我国古代著名的数学专著《九章算术》.中如果把收入5元记作+5元,那么支出5元记作【 】

下列出版社的商标图案中,是轴对称图形的为【 】

2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为【 】

如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD = 【 】

计算3/a+2/a的结果为【 】

我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了【 】

某学校开设了劳动教育课程.小明从感兴趣的“种植”、“烹饪”、“陶艺”、“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为【 】

一元一次不等式组的解集为【 】