关注优题吧,注册平台账号.
如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为______.
(4,3)
【解析】
∵平行四边形ABCD的面积为9,且A的坐标为(1,3),
∴3·AC=9,
∴AC=3,
∴C(4,3).
下列出版社的商标图案中,是轴对称图形的为【 】
下列图形中为轴对称图形的是【 】
下列图形中既是轴对称图形,也是中心对称图形的是【 】
下列图形中,不是轴对称图形的是【 】
在下列交通标志中,既是轴对称图形,又是中心对称图形的是【 】
下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】
下列所述图形中,是中心对称图形的是【 】
下列所述图形中,既是轴对称图形又是中心对称图形的是【 】
下列所述图形中,是轴对称图形但不是中心对称图形的是【 】
下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【 】
如图,在▱ABCD 中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.
如图,在▱ABCD中,一定正确的是【 】
菱形的边长为5,则它的周长为______.
如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,a的值为【 】
(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≅△FCB;②若SABCD=20时,BE⋅CF=________.(2)如图2,在菱形ABCD中,cosA=1/3,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若SABCD=24,求EF∙BC的值.(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF∙EG=7√3,请直接写出AG的长.
以下说法正确的是【 】
(1) 发现:如图1所示,在正方形 ABCD 中,E为AD 边上一点,将△AEB 沿BE 翻折到△BEF 处,延长EF交CD 边于点G.求证:△BFG≌△BCG.(2) 探究:如图2,在矩形ABCD中,E为AD 边上一点,且AD=8,AB=6.将△AEB 沿BE 翻折到△BEF处,延长EF交BC边于点G,延长BF交CD边于点H,且FH=CH,求AE的长.(3) 拓展:如图3,在菱形ABCD中,E为CD 边上的三等分点,∠D=60°。将△ADE沿AE 翻折得到△AFE,直线EF交BC于点P,求PC的长.
在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形,∴DC//AB∴∠ECO = ______.∵EF垂直平分AC,∵________.又∠EOC = ______,∴△COE≌△AOF (ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线________________.
如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是___________.
如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.
如图,在平面直角坐标系xOy中,点A(-2,0),B(0,2),(AB) ̂所在圆的圆心为O.将(AB) ̂向右平移5个单位,得到(CD) ̂(点A平移后的对应点为C).(1)点D的坐标是______,(CD) ̂所在圆的圆心坐标是________;(2)在图中画出(CD) ̂,并连接AC,BD;(3)求由(AB) ̂,BD,(DC) ̂,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)
在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(-2,0),点Q为点P的“对应点”. ①在图中画出点Q;②连接PQ.交线段ON于点T.求证:NT=1/2 OM.(2) ⨀O的半径为1,M是⨀O上一点,点N在线段OM上,且ON=t(1/2<t<1),若P为⨀O外一点,点Q为点P的“对应点”,连接PQ.当点M在⨀O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).
下列图形中是轴对称图形的是【 】
-(-2023)=【 】
一个几何体的三视图如图所示,则它表示的几何体可能是【 】
学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是【 】
下列运算正确的是【 】
不等式组的解集在数轴上表示为【 】
已知正比例函数y1=ax的图象经过点(1,-1),反比例函数y2=b/x的图象位于第一、三象限,则一次函数y=ax+b的图象一定不经过【 】
如图,海中有一小岛A,在B点测得小岛A在北偏东30°方向上,渔船从B点出发由西向东航行10n mile到达C点,在C点测得小岛A恰好在正北方向上,此时渔船与小岛A的距离为【 】n mile.