单项选择(2023年广东省广州市

学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是【 】

A、众数为10

B、平均数为10

C、方差为2

D、中位数为9

答案解析

A

讨论

一个几何体的三视图如图所示,则它表示的几何体可能是【 】

-(-2023)=【 】

垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD为“垂中平行四边形”,AF=√5,CE=2,则AE=______;AB=______;(2)如图2,若四边形ABCD为“垂中平行四边形”,且AB=BD,猜想AF与CD的关系,并说明理由;(3)①如图3 所示,在△ABC中,BE=5,CE=2AE=12,BE⊥AC交AC于点E,请画出以 BC为边的垂中平行四边形,要求:点A在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若△ABC关于直线AC对称得到△AB'C,连接CB',作射线CB'交①中所画平行四边形的边于点P,连接PE,请直接写出PE的值.

为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(I)列表: ① ② ③ ④ ⑤ ⑥x 0 2 3 4 5 6y 0 1 2.25 4 6.25 9(Ⅱ)描点:请将表格中的(x,y)描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a(x-h)²+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a(x-h)²+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax².①此时点B'的坐标为________;②将点B'坐标代入y=ax²中,解得a=______;(用含m,n的式子表示).方案二:设C点坐标为(h,k).①此时点B的坐标为______;②将点B坐标代入y=a(x-h)²+k中,解得a=______;(用含m,n的式子表示).(3)【应用】如图4已知平面直角坐标系xOy中有A,B两点,AB=4,且AB//x轴,二次函数C1:y1=2(x+h)²+k和C2:y2=a(x+h)²+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之为和10,求a的值.

如图,在△ABD中,AB=BD,⨀O为△ABD的外接圆,BE为⨀O的切线,AC为⨀O的直径,连接DC并延长BE于点E.(1) 求证:DE⊥BE;(2) 若AB=5√6,BE=5,求⨀O的半径.

【背景:缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”。深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图1,某商场为迎接即将到来的618优惠节,采购了若干辆购物车。 【素材】如图为购物车叠放在一起的示意图2,若一辆购物车车身长lm,每增加一辆购物车,车身增加0.2m.解决问题:【任务1】若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;【任务2】若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为 2.6m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?【任务3】若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?

据了解,“i深圳”体育场地一键预约平是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义。按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”。小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50学校B: (1)根据上述统计数据,填表:学校 平均数 众数 中位数 方差A ①____ 48 83.299B 48.4 ②____ ③____ 354.04(2)根据上述材料分析,小说爸爸应该预约哪所学校?请说明你的理由.

先化简,再求值:(1-2/(a+1))÷(a²-2a+1)/(a+1),其中a=√2+1.

计算:-2cos45°+(π-3.14)0+|1-√2|+(1/4)-1.

如图,在△ABC中,AB=AC,tan∠B=5/12,D为BC上一点,且满足BD/CD=8/5,过D作DE⊥AD交AC延长线于点E,则CE/AC=______.

我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了【 】

小红家到学校有两条公共汽车线路。为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位: min)数据统计表实验序号 1 2 3 4 5 6 7 8 9 10A线路所用时间 15 32 15 16 34 18 21 14 35 20B线路所用时间 25 29 23 25 27 26 31 28 30 24根据以上信息解答下列问题 平均数 中位数 众数 方差A线路所用时间 22 a 15 63.2B线路所用时间 b 26.5 c 6.36(1)填空:a=________;b=________;c=________;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.数据拆线统计图

为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8.(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?均月销售额(平数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?

下表为五种运动耗氧情况,其中耗氧量的中位数是【 】打网球 跳绳 爬楼梯 慢跑 游泳80L/h 90L/h 105L/h 110L/h 115L/h

为了提高某城区居民的生活质量,政府将改造城区配套设施,并随机向某居民小区发放调查问卷(1人只能投1票),共有休闲设施,儿童设施,娱乐设施,健身设施4种选项,一共调查了 a 人,其调查结果如下: 如图,为根据调查结果绘制的扇形统计图(图1)和条形统计图(图 2),请根据统计图回答下面的问题:① 总人数a=________人;② 请补充条形统计图;③ 若该城区共有10万居民,则其中愿意改造“娱乐设施”的约有多少人?④ 改造完成后,该政府部门向甲、乙两小区下发满意度调查问卷,其结果(分数)如下:项目小区 休闲 儿童 娱乐 健身甲 7 7 9 8乙 8 8 7 9若以1:1:1:1进行考核,______小区满意度(分数)更高;若以1:1:2:1进行考核,______小区满意度(分数)更高.

某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取______名学生进行调查,扇形统计图中的x=______;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是______度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有______名.

某同学在今年的中考体育测试中选考跳绳,考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是【 】

以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛。某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图. 请根据统计图提供的信息,解答下列问题.(1)m=______,n=______.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.

某学校进行演讲比赛,最终有7位同学进入决赛,这七位同学的评分分别是:9.5,9.3,9.1,9.4,9.7,9.3,9.6.请问这组评分的众数是【 】

某工厂一共有1200人,为选拔人才,提出了一些选拔的条件,并进行了抽样调查。从中抽出400人,发现有300人是符合条件的,那么则该工厂1200人中符合选拔条件的人数为______人.

某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A,B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,89 抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表:设备 平均数 中位数 众数 “非常满意”占比A 88 m 96 45%B 88 87 n 40%根据以上信息,解答下列问题:(1)填空:a=______,m=______,n=______;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条即可).

数据1、2、5、3、5、3、3的中位数是【 】

某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如下表和下图所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图; (2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.

某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. (1)这次被调查的同学共有________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?

一组数据2,6,5,2,4,则这组数据的中位数是【 】

某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是【 】

某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球,乒乓球,篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育项目的学生人数,随机抽取了部分学生进行调查,并将通过点差获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了 250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480人.

在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是【 】

某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边 体重(千克) 人数A 45≤x<50 12B 50≤x<55 mC 55≤x<60 80D 60≤x<65 40E 65≤x<70 16(1)填空:①m=______(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于______度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?

数据1、5、7、4、8的中位数是【 】