问答题(2019年广东省深圳市

某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.

(1)这次共抽取______名学生进行调查,扇形统计图中的x=______;

(2)请补全统计图;

(3)在扇形统计图中“扬琴”所对扇形的圆心角是______度;

(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有______名.

答案解析

(1)200  15%

(2)补全统计图如下:

(3)36°

(4)900

(解答过程见word版)

讨论

先化简(1-3/(x+2))÷(x-1)/(x²+4x+4),再将x=-1代入求值.

计算:√9-2cos60°+(1/8)-1+(π-3.14)0

(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≅△FCB;②若SABCD=20时,BE⋅CF=________.(2)如图2,在菱形ABCD中,cosA=1/3,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若SABCD=24,求EF∙BC的值.(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF∙EG=7√3,请直接写出AG的长.

蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图1,某个温室大棚的横截面可以看作形ABCD和物线AED构成,其中AB=3m,BC=4m,取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED于点E,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图所示平面直角标系.请回答下列问题:(1)如图2,抛物线AED的顶点E(0,4),求抛物线的解析式;(2)如图3,为了保证蔬菜大棚的通风性该大棚要安装两个正方形孔的排气装置LFGT,SMNR,若FL=NR=0.75m,求两个正方形装置的间距GM的长;(3)如图4,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为BK,求BK的长.

如图,在单位长度为1的网格中,点O,A,B均在格点上,OA=3,AB=2,以O为圆心,OA为半径画圆,请按下列步骤完成作图,并回答问题:①过点A作切线AC,且AC=4(点C在A的下方);②连接OC,交⊙O于点D;③连接BD,与AC交于点E.(1)求证:DB为⊙O的切线;(2)求AE的长度.

某商场在世博会上购置A,B两种玩具,其中B玩具单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个 A玩具?

为了提高某城区居民的生活质量,政府将改造城区配套设施,并随机向某居民小区发放调查问卷(1人只能投1票),共有休闲设施,儿童设施,娱乐设施,健身设施4种选项,一共调查了 a 人,其调查结果如下: 如图,为根据调查结果绘制的扇形统计图(图1)和条形统计图(图 2),请根据统计图回答下面的问题:① 总人数a=________人;② 请补充条形统计图;③ 若该城区共有10万居民,则其中愿意改造“娱乐设施”的约有多少人?④ 改造完成后,该政府部门向甲、乙两小区下发满意度调查问卷,其结果(分数)如下:项目小区 休闲 儿童 娱乐 健身甲 7 7 9 8乙 8 8 7 9若以1:1:1:1进行考核,______小区满意度(分数)更高;若以1:1:2:1进行考核,______小区满意度(分数)更高.

先化简,再求值:(1/(x-1)+1)÷(x²-1)/(x²-2x+1),其中x=3.

计算:(1+π)0+2-|-3|+2sin45°.

如图,在△ABC中,AB=AC,tanB=3/4,点D为BC上一动点,连接AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE<DG,且AG:CG=3:1,则S△AGE/S△ADG =________.

我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了【 】

小红家到学校有两条公共汽车线路。为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位: min)数据统计表实验序号 1 2 3 4 5 6 7 8 9 10A线路所用时间 15 32 15 16 34 18 21 14 35 20B线路所用时间 25 29 23 25 27 26 31 28 30 24根据以上信息解答下列问题 平均数 中位数 众数 方差A线路所用时间 22 a 15 63.2B线路所用时间 b 26.5 c 6.36(1)填空:a=________;b=________;c=________;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.数据拆线统计图

为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8.(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?均月销售额(平数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?

下表为五种运动耗氧情况,其中耗氧量的中位数是【 】打网球 跳绳 爬楼梯 慢跑 游泳80L/h 90L/h 105L/h 110L/h 115L/h

某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用。左图是甲、乙测试成绩的条形统计图。 (1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(右)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.

某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了______名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于______度(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是______人.

为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:分数段 频数 频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x<100 60 0.2根据以上图表提供的信息,解答下列问题:(1)本次调查的样本容量为______;(2)在表中:m=______,n=______;(3)补全频数分布直方图; (4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在__________分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是________.

为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.平均每周劳动时间条形统计图平均每周劳动时间扇形统计图根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是______,C组所在扇形的圆心角的大小是______;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.

为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021-2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼,我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球,为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表。根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数。

孔子曾说:“知之者不如好之者,好之者不如乐之者”兴趣是最好的老师。阅读、书法、绘画、手工、烹饪、运动、音乐…各种兴趣爱好是打开创新之门的金钥匙。某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长,对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表组别 时长t(单位:h) 人数累计 人数第一组 1≤t<2 正正正正正正 30第二组 2 正正正正正正正正正正正正 60第三组 3≤t<4 正正正正正正正正正正正正正正 70第四组 4 正正正正正正正正 40根据以上信息,解答下列问题:(1)全数分布直方图 (2)这200名学生每周自主发展兴趣爱好时长的中位数落在第______组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为______,对应的扇形圆心角的度数为______。(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?

2013 年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款 100元”、“穿绿马甲维护交通”,如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共______;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是______%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于______度.行人闯红灯违法处罚条形统计图行人闯红灯违法处罚扇形统计图

关于体育选考项目统计图项目 频数 频率A 80 BB C 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=______,b=______,c=______. (2)如果有3万人参加体育选考,会有多少人选择篮球?

11月读书节,深圳市为统计某学校初三学生读书状况,如下图: (1)三本以上的x值为______,参加调查的总人数为______,补全统计图;(2)三本以上的圆心角为______;(3)全市有6.7万学生,三本以上有______人.

深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况,某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况 频数 频率A.高度关注 M 0.1B.一般关注 100 0.5C.不关注 30 ND.不知道 50 0.25东进战略关注情况条形统计图(1)根据上述统计图可得此次采访的人数为________人,M = ________,N = ________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在 15000 名深圳市民中,高度关注东进战略的深圳市民约有________人.

深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率A 30 xB 18 0.15C m 0.40D n y(1) 学生共______人,x=______,y=______;(2)补全条形统计图;(3)若该校共有 2000 人,骑共享单车的有______人.

某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形图: 频数 频率体育 40 0.4科技 25 a艺术 b 0.15其它 20 0.2请根据上图完成下面题目:(1)总人数为______人,a=______,b=______.(2)请你补充全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术的学生人数有多少?

为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.

某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?

在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如下统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图. (1)根据图①中的数据,A地区星期三累计确诊人数为__________,新增确诊人数为__________;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析,推断?

为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如两幅不完整的统计图: 请你根据统计图的信息,解决下列问题:(1)本次共调查了_________名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为_________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.