填空题(2023年广东省深圳市

如图,在△ABC中,AB=AC,tanB=3/4,点D为BC上一动点,连接AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE<DG,且AG:CG=3:1,则S△AGE/S△ADG =________.

答案解析

49/75(解答过程见word版)

讨论

在正方形ABCD中,等腰直角△AEF, ∠AFE=90°,连接CE,H为CE的中点,连接BH、BF、HF,发现BF/BH和∠HBF为定值. (1)①BF/BH=________;②∠HBF=________;③小明为了证明①②,连接AC交BD于O,连接OH,证明了OH/AF和BA/BO的关系,请你按他的思路证明①②.(2)小明又用三个相似三角形(两个大三角形全等)摆出下图,BD/AD=EA/FA=k,∠BDA=∠EAF=θ(0°<θ<90°).①FD/HD=________(用k的代数式表示)②FH/HD=________(用k,θ的代数式表示)

在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=√2,则AC=________.

如图,每个小正方形边长均为1,则图中的三角形(阴影部分)与下图中△ABC相似的是【 】

如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为【 】

已知ΔABC的周长为16,点D,E,F分别为ΔABC三条边的中点,则ΔDEF的周长为【 】

如图,BC//DE,且BC<DE,AD=BC=4,AB+DE=10,则AE/AC的值为__________.

如图,在ΔABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D,若BC=4,则CD的长为_________.

泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】

如果+10°C表示零上10度,那么零下8度表示为【 】

下列图形中为轴对称图形的是【 】

下列图形中具有稳定性的是【 】

如图,在△ABC中,BC=4,点D、E分别为AB、AC的中点,则DE=【 】

如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

在长方形ABCD中,长为4,宽为2,N为CD的中点,M在AD上,且MBC=BMN,求AM.

如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m. (1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据: tan76°取4,√17取4.1)

如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到ΔEF1B;点F2是CF_1的中点,连接EF2,BF2,得到ΔEF2 B;点F3是CF2的中点,连接EF3,BF3,得到ΔEF3 B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则ΔEFn B的面积为_________.(用含正整数n的式子表示)

如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为【 】

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】

如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.