在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=√2,则AC=________.
在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=√2,则AC=________.
(8√10)/5如图,∵AD,BE分别是∠BAC,∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=√2,∴EG=FG=1,∵AF=4,∴A...
查看完整答案泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】
已知ΔABC的周长为16,点D,E,F分别为ΔABC三条边的中点,则ΔDEF的周长为【 】
如图,BC//DE,且BC<DE,AD=BC=4,AB+DE=10,则AE/AC的值为__________.
如图,在ΔABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D,若BC=4,则CD的长为_________.
如图,每个小正方形边长均为1,则图中的三角形(阴影部分)与下图中△ABC相似的是【 】
如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为【 】
如图所示,在正方形网格中,每个小正方形的边长为1个单位.(1)过直线m作四边形ABCD的对称图形;(2)求四边形ABCD的面积。
在△ABC中,∠ABC=90°,若AC=100,sinA=3/5,则AB的长是【 】
已知△ABC的三个顶点都是同一个正方形的顶点,∠ABC的平分线与线段AC交于点D.若△ABC的一条边长为6,则点D到直线AB的距离为________.(结果要化简,不能含三角函数)
在ΔABC中,∠ABC=90°,AB=2,BC=3,点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为________.
如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB. (1)若AE=1,求△ABD的周长;(2)若AD=1/3 BD,求tan∠ABC的值.
如图,边长为1的正方形ABCD中,点E为AD的中点,连接BE,将ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB'C',使点C'落在AB边上,连结BB',则sin∠BB'C'的值为【 】
如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直一部分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为________.
已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】
如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
如图,在平面直角坐标系中,△AOB的边AO、AB的中点C、D的横坐标分别是1、4,则点B的横坐标是______.
如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】
如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.
用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:Rt△ABC,∠B=90°.求作:点P使点P在△ABC内部,且PB=PC,∠PBC=45°.