问答题(2021年广东省深圳市

在正方形ABCD中,等腰直角△AEF, ∠AFE=90°,连接CE,H为CE的中点,连接BH、BF、HF,发现BF/BH和∠HBF为定值. 

(1)①BF/BH=________;

②∠HBF=________;

③小明为了证明①②,连接AC交BD于O,连接OH,证明了OH/AF和BA/BO的关系,请你按他的思路证明①②.

(2)小明又用三个相似三角形(两个大三角形全等)摆出下图,BD/AD=EA/FA=k,∠BDA=∠EAF=θ(0°<θ<90°).

①FD/HD=________(用k的代数式表示)

②FH/HD=________(用k,θ的代数式表示)

答案解析

(1)①√2;②45°③由正方形的性质得:AB/BO=√2.O为AC的中点,又∵H为CE的中点,∴OH//AE,OH=1/2 AE,∵△AEF是等腰直角三角形,∴AE=√2 AF,∴AF/OH=√2=AB/BO,∵OH//AE,∴∠COH=∠CAE,∴∠BOH=∠BAF,∴△BOH∼△BAF,∴BF/BH=√2,∠HBF=∠HBO+∠OBF=∠FBA+∠OBF=45°.(2)①如图,连接AC交BD于O...

查看完整答案

讨论

如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到ΔEF1B;点F2是CF_1的中点,连接EF2,BF2,得到ΔEF2 B;点F3是CF2的中点,连接EF3,BF3,得到ΔEF3 B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则ΔEFn B的面积为_________.(用含正整数n的式子表示)

如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为【 】

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=(a+b+c)/2,则其面积S=.这个公式也被称为海伦-秦九韶公式.若p=5,c=4,则此三角形面积的最大值为【 】

如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB. (1)若AE=1,求△ABD的周长;(2)若AD=1/3 BD,求tan∠ABC的值.

如图,边长为1的正方形ABCD中,点E为AD的中点,连接BE,将ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.

如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF的周长为____________.

如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆心,大于1/2 MN的长为半径画弧,两弧在∠ABC 的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠A的度数是【 】

如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=2,DE=1,则S△ACD=________.

下列哪个图形是正方体的展开图【 】

如图,l1//AB,AC为角平分线,下列说法错误的是【 】

中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是【 】

如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.

为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上. (1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)

若α=70°,则α的补角的度数是【 】

若一个扇形的圆心角为60°,面积为π/6 cm2,则这个扇形的弧长为_________cm(结果保留π).

若一个多边形的内角和是540°,则该多边形的边数为【 】

如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.

如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是【 】