单项选择(2023年广东省

如图,AB是⊙O的直径,∠BAC=50°,则∠D=【 】

A、20°

B、40°

C、50°

D、80°

答案解析

B

讨论

下列出版社的商标图案中,是轴对称图形的为【 】

如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD = 【 】

边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.

如图,在▱ABCD 中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.

综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒. 猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A1B1C1的大小关系:(2)证明 (1)中你发现的结论.

综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'.连接AA'交BD于点E,连接CA'. (1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⨀O与CD相切,求证:AA'=√3 CA';②如图3,⨀O与CA'相切,AD=1,求⨀O的面积.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点 C,D的连线交于点E,则(1)AB与CD是否垂直?______(填是”或否")(2)AE=______.

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD干点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.

如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点BC为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE则下列结论错误的是【 】

如图,AB是⊙O的弦,C是AB的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______cm.

如图,正六边形ABCDEF内接于⨀O.点M在(AB) ̂上则∠CME的度数为【 】

如图所示,该小组发现8米高旗杆DE的影子 EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高 1.6 米,测得其影长2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧 GH 的中点到弦 GH 的距离即MN的长)为2米,求小桥所在圆的半径.

如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC 并延长到D,使DC=4CA,连接BD.(1)求OM的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP-AP|最大.

如图,AB为⊙O的直径,已知∠DCB=20°,则∠DBA为【 】

如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC=________.

如图,等边△ABC的三个顶点都在⨀O上,AD是⨀O的直径.若OA=3,则劣弧BD的长是【 】

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则 OP=【 】

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=_______cm.

如图(左),已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙0于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图(右),连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留T与根号)

如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为【 】

如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB,AD于点F,G,DF与AE交于点H.并与⨀A交于点K,连接HG,HC.给出下列四个结论,其中正确的有________(填写所有正确结论的序号)(1) H是FK的中点; (2) △HGD≅△HEC;(3) S△AHG:S△DHC=9:16; (4) DK=7/5

如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=________.

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。