单项选择(2017年广东省深圳市

如图,学校环保社成员想测量斜坡 CD 旁一棵树AB 的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是【 】m.

A、20√3

B、30

C、30√3

D、40

答案解析

B在Rt△CDE中,CD=20,DE=10m,∴sin∠DCE=10/20=1/2,∴∠DCE=30°,∵∠ACB=60°,DF//AE,∴∠BGF=60°,∴∠ABC=30°,∠DCB=90°.∵∠...

查看完整答案

讨论

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

如图,在平面直角坐标系xOy中,直线l:y=1/2 x+4分别与x轴,y轴相交于A,B两点,点P(x,y)为直线l在第二象限的点.(1) 求A,B两点的坐标;(2) 设△PAO的面积为S,求S关于x的解析式,并写出x的取值范围;(3) 作△PAO的外接圆⨀C,延长PC交⨀C于点Q,当△POQ的面积最小时,求⨀C的半径.

如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是【 】

在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1) 若m=3,n=15,求该抛物线的对称轴;(2) 已知点(-1,y1 ),(2,y2 ),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

在“看图说故事”活动中,某学习小组结合图像设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓,给出的图像反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(I)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km 0.5 ___ ___ 1.6 ___(Ⅱ)填空:①阅览室到超市的距离为________km;②小琪从超市返回学生公寓的速度为________km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为________min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

已知二次函数y=ax2+bx+c的图像开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是【 】