关注优题吧,注册平台账号.
已知二次函数y=a (x-1)²-c的图像如图所示,则一次函数y=ax+c 的大致图像可能 是【 】
A、
B、
C、
D、
A
【解析】
根据二次函数开口向上,得a>0;根据-c是二次函数的顶点纵坐标,得c>0,
故一次函数y=ax+c的大致图像经过一、二、三象限.
已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】
甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.
在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图像经过点(4,3),(-2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.
甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是【 】
在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图像可能是【 】
某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成下图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)( x≥0)的函数关系. (1)分别求y1,y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元,这个公司采用了哪种方案给这名销售人员付3月份的工资?
在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图像与x轴、y轴分别交于A,B两点,且与反比例函数y=4/x的图像的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.
某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:x(万元) 10 12 14 16y(件) 40 30 20 10(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?
在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像由函数y=1/2 x的图像向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>-2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.
若一次函数y=x+b(b是常数)的图像经过第一、二、三象限,则b的值可以是______(写出一个即可).
已知二次函数y=ax2+bx+c的图像过点(-1,0),且对任意实数x都有4x-12≤ax2+bx+c≤2x2-8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图像与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次数图像上的动点,问在x轴上是否存在点N,使得以A,C,M,N为顶点的四边形是平行四边形,若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为【 】
在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1) 若m=3,n=15,求该抛物线的对称轴;(2) 已知点(-1,y1 ),(2,y2 ),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.
在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.
已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.
已知二次函数y=ax2+bx+c的图像开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是【 】
已知二次函数y=x2+mx+m2-3(m为常数,m>0)的图像经过点P(2,4).(1)求m的值:(2)判断二次函数y=x2+mx+m2-3的图像与x轴交点的个数,并说明理由.
李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
如图,点P(a,3)在抛物线C:y=4-(6-x)2上,且在C的对称轴右侧. (1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P',C',平移该胶片使C'所在抛物线对应的函数恰为y=-x2+6x-9.求点P'移动的最短路程.
下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。用函数观点认识一元二次方程根的情况:我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图像(称为抛物线)与x轴交点的横坐标,抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点,与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根,因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(-b/2a,(4ac-b2)/4a)和一元二次方程根的判别式∆=b2-4ac,分a>0和a<0两种情况进行分析:(1) a>0时,抛物线开口向上.①当∆=b2-4ac>0时,有4ac-b2<0.∵a>0,∴顶点纵坐标(4ac-b2)/4a<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图).②当∆=b2-4ac=0时,有4ac-b2=0.∵a>0,∴顶点纵坐标(4ac-b2)/4a=0∴顶点在x轴上,抛物线与x轴有一个交点(如图).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当∆=b2-4ac<0时,.....(2) a<0时,抛物线开口向下……任务:(1)上面小论文中的分析过程,主要运用的数学思想是______(从下面选项中选出两个即可);A.数形结合 B.统计思想 C.分类讨论 D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,∆<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为__________.
如图1,抛物线y=ax2+2x+c经过点A(-1,0),C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D. (1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当PD/AD的值最大且△APQ是直角三角形时,求点Q的横坐标; (4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI//y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标。
竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】
如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.
若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】
如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(-2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB. (1)求抛物线的函数表达式;(2)当ΔBCD的面积等于ΔAOC的面积的3/4时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求ΔPAC面积的最大值及此时点P的坐标.
把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为【 】
如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论: abc>0;②b2-4ac>0;③8a+c 正确的有【 】
如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.
已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0 (m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n (0<n<m)有两个整数根,这两个整数根是【 】