问答题(2021年广东省

已知二次函数y=ax2+bx+c的图像过点(-1,0),且对任意实数x都有4x-12≤ax2+bx+c≤2x2-8x+6.

(1)求该二次函数的解析式;

(2)若(1)中二次函数图像与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次数图像上的动点,问在x轴上是否存在点N,使得以A,C,M,N为顶点的四边形是平行四边形,若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.

答案解析

(1)令4x-12=2x2-8x+6,解得x1=x2=3.当x=3时,4x-12=2x2-8x+6=0,∴y=ax2+bx+c必过点(3,0),又y=ax2+bx+c过点(-1,0),∴⟹∴y=ax2-2ax-3a又4x-12≤ax2+bx+c,∴ax2-2ax-4x+12-3a≥0,∴a>0且∆≤0∴(2a+4)2-4a(12-3a)=(a-1)2≤0⟹a=1,故b=-2a=-2,c=-3a=-3∴y=x2-2x-3.(2)由(1)可知:A(3,0),C(0,-3),设...

查看完整答案

讨论

如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点EF分别在线段BC、AD上,且EF//CD,AB=AF,CD=DE.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.

如图,边长为1的正方形ABCD中,点E为AD的中点,连接BE,将ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图像与x轴、y轴分别交于A,B两点,且与反比例函数y=4/x的图像的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.

如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB. (1)若AE=1,求△ABD的周长;(2)若AD=1/3 BD,求tan∠ABC的值.

某中学九年级举办中华优秀传统文化知识竞赛,用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.

广东省一元一次不等式组

在ΔABC中,∠ABC=90°,AB=2,BC=3,点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为________.

如图,在▱ABCD中,AD=5,AB=12,sinA=4/5.过点D作DE⊥AB,垂足为E,则sin∠BCE=________.

若x+1/x=13/6且0<x<1,则x2-1/x2 =__________.

如图,二次两数y=x2-(m+1)x+m(m是实数,且-1<m<0)的图像与x轴交于A,B两点(点A在点B的左侧),其对称轴与x轴交于C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF. (1)求A,B,C三点的坐标(用数字或含m的式子表示);(2)已知点Q在拋物线的对称轴上,当△AFQ的周长的最小值等于12/5时,求m的值.

已知二次函数y=ax2+bx+c的图像经过(-2,1),(2-3)两点.(1)求b的值.(2)当c>-1时,该函数的图像的顶点的纵坐标的最小值是__________.(3)设(m,0)是该函数的图像与x轴的一个公共点,当-1<m<3时,结合函数的图像,直接写出a的取值范围.

已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1 (x1,y1 ),P2 (x2,y2)是抛物线上不同于A,B的两个点,记△P1 AB的面积为S1,△P2 AB的面积为S2.有以下结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的个数是【 】

已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当b/a的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则b/a的值是______.

已知抛物线y=-2x2+bx+c经过点(0,-2),当x<-4时,y随x的增大而增大,当x>-4时,y随x的增大而减小.设r是抛物线y=-2x2+bx+c与x轴的交点(也称公共点)的横坐标,m=(r9+r7-2r5+r3+r-1)/(r9+60r5-1).(1)求b,c的值;(2)求证:r4-2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你的结论.

设O为坐标原点,点A,B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A,B,过O作OC⊥AB于点C,则点C到y轴距离的最大值【 】

把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为____________.

如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的-点,且BC⊥AC,抛物线y=-1/2 x²+bx+c经过C,B两点,与x轴的另一交点为D. (1)点B的坐标为(____,____),抛物线的表达式为__________;(2)如图2,求证:BD//AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.

二次函数y=ax²+bx+c 图象如图,下列正确的个数为【 】①bc>0;②2a-3c<0;③2a+b>0;④ax²+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.

如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为 E,与y 轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则△EFG的面积与△ACD的面积是否存在8倍的关系?若有请直接写出F点的坐标.

二次函数y=ax²+bx+c (a≠0)的图像如图所示,下列说法正确的个数是【 】①a>0;②b>0;③c<0;④b²- 4ac>0.

如图1,关于x的二次函数y=-x²+bx+c经过点A(-3,0),C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2) DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.

如图,抛物线y=ax²+2x-3与x轴交于A,B两点,且B(1,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=2/3 x-4/9分别与x轴、y轴交于C,F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

如图,抛物线y=ax²+bx+2经过点A(-1,0),B(4,0),交y轴于点C.(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=2/3 S△ABD?若存在请直接给出点D的坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

二次函数y=ax²+bx+c(a≠0)的图像如图所示,下列结论正确提【 】

已知顶点为A的抛物线y=a(x-1/2)²-2经过点B(-3/2,2),点C(5/2,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠0PM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN//y 轴,过点E作EN//x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.

已知y=ax²+bx+c(a≠0)的图像如图,则y=ax+b和y=c/x的图像为【 】

竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】