问答题(2017年广东省深圳市

如图,抛物线y=ax²+bx+2经过点A(-1,0),B(4,0),交y轴于点C.

(1)求抛物线的解析式(用一般式表示);

(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=2/3 S△ABD?若存在请直接给出点D的坐标;若不存在请说明理由;

(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

答案解析

(1)∵抛物线y=ax²+bx+2经过点A(-1,0),B(4,0),∴,解得,∴抛物线的解析式为y=-1/2 x²+3/2 x+2.(2)由题意可知C(0,2),A(-1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=1/2 AB⋅OC=1/2×5×2=5,∵S△ABC=2/3 S△ABD,∴S△ABD=3/2×5=15/2,设D(x,y),则有1/2 AB⋅|y|=1/2×5|y|=15/2,解得|y|=3,当y=3时,由-1/2 x²+3/2 x+2=3得x=1或x=2,此时D点的坐标为(1,3)或(2,3);当y=-3时,由-1/2 x²+3/2 x+2=-3得x=-2(舍去)或x=5,此时...

查看完整答案

讨论

如图,线段AB是⨀O的直径,弦CD⊥AB于点H,点M是(CBD) ̂上任意一点,AH=2,CH=4.(1)求⨀O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE⋅HF的值.

如图,一次函数y=kx+b 与反比例函数y=m/x(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=m/x(x>0)的表达式;(2)求证:AD=BC.

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型 频数 频率A 30 xB 18 0.15C m 0.40D n y(1) 学生共______人,x=______,y=______;(2)补全条形统计图;(3)若该校共有 2000 人,骑共享单车的有______人.

先化简,再求值:(2x/(x-2)+x/(x+2))÷x/(x²-4),其中x=-1.

计算:|√2-2|-2cos45°+(-1)-2+√8.

如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.

阅读理解:引入新数 i,新数满足分配律,结合律,交换律,已知 i²=-1,那么(1+i)·(1-i) = ______.

在一个不透明的袋子里,有 2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是______.

因式分解:a³-4a = ________________.

如图1,关于x的二次函数y=-x²+bx+c经过点A(-3,0),C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2) DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.

如图,抛物线y=ax²+2x-3与x轴交于A,B两点,且B(1,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=2/3 x-4/9分别与x轴、y轴交于C,F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】

如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(-2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB. (1)求抛物线的函数表达式;(2)当ΔBCD的面积等于ΔAOC的面积的3/4时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.

如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求ΔPAC面积的最大值及此时点P的坐标.

把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为【 】

如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论: abc>0;②b2-4ac>0;③8a+c 正确的有【 】

如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.

假设小丽的眼睛距地面1.5米,当她站在C点时,测出旗杆A的仰角为 30°,如果向前走 10米到达点E,此时的仰角为60°,求旗杆AB的高度.

某兴趣小组借助无人飞机航拍校园如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

如图,学校环保社成员想测量斜坡 CD 旁一棵树AB 的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是【 】m.

已知函数y=,则自变量x的取值范围是___________.

已知y=-x+5,当x分别取1,2,3,……,2020时,所对应y值的总和是_________.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=_________时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:___________________________.

已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0 (m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n (0<n<m)有两个整数根,这两个整数根是【 】

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下: (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?

把1-9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为【 】