问答题(2017年广东省深圳市

如图,一次函数y=kx+b 与反比例函数y=m/x(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.

(1)直接写出一次函数y=kx+b的表达式和反比例函数y=m/x(x>0)的表达式;

(2)求证:AD=BC.

答案解析

(1)将点A(2,4)代入y=m/x中,得m=8,∴反比例函数的解析式为y=8/x,将点B(a,1)代入y=8/x中,得a=8,∴B(8,1),将A(2,4),B(8,1)代入y=kx+b中,得,解得,∴一次函数的解析式为y=-1/2 x+5.(2)∵直线AB...

查看完整答案

讨论

如图,一次函数y=x+1的图象与反比例函数y=k/x的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k/x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k/x的图象没有公共点.

如图,在ΔABC中,AB=AC,点A在反比例函数y=k/x(k>0,x>0)的图象上,点B,C在x轴上,OC=1/5 OB,延长AC交y轴于点D,连接BD,若ΔBCD的面积等于1,则k的值为_________.

如图,在平面直角坐标系中,一次函数y=1/2x+5和y=﹣2x的图像相交于点A,反比例函数y=k/x的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=1/2x+5的图像与反比例函数y=k/x的图像的另一个交点为B,OB,求△ABO的面积.

如图,一次函数y=kx-1的图象与反比例函数y=m/x的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.

已知反比例函数解析式y=k/x的图象经过(1,-2),则k=________.

如图,直线y=2x-6与反比例函数y=k/x(x>0)的图像交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标; (2)在ⅹ轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

如图所示,点P(3a,a)是反比例函数y=k/x(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为【 】

如图,双曲线y=k/x(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为________.

已知点A(a,y1),B(a+1,y2)在反比例函数y=(m2+1)/x (m是常数)的图像上,且y1<y2则a的取值范围是________.

如图,在平面直角坐标系中,四边形OABCOABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=-3x+k的图像经过点C,D,反比例函数y=k/x(x>0)的图像经过点B,求k的值.

在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像由函数y=1/2 x的图像向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>-2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.

若一次函数y=x+b(b是常数)的图像经过第一、二、三象限,则b的值可以是______(写出一个即可).

在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图像经过点(4,3),(-2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.

甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是【 】

在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图像可能是【 】

已知函数y=ax+b经过(1,3),(0,-2),则a - b=【 】

若一次函数y=2x+2的图象经过点(3,m),则m=_________.

如图,在平面直角坐标系中,直线l:y=-2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=______时,直线l:y=-2x+b(b≥0)经过圆心M;当b=______时,直线l:y=-2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.

已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】

甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.

使在实数范围内有意义,x的取值范围是__________.

已知抛物线y=1/2 x2+x+c与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.

如图,抛物线y=1/2 x2-3/2 x-9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行于BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表1:表2:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?

如图(左),抛物线y=ax2+bx+c (a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0). (1)求抛物线的解析式;(2)如图(中),过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图(右),在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN//BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1 ),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).

如图(左),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等.设x=AD,y=AE+CD,y关于x的函数图像如图(右),图像过点(0,2),则图像最低点的横坐标是________.

抛物线y=x2-1交x轴于A,B两点(A在B的左边),(1) ▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是5,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.