填空题(2012年广东省深圳市

如图,双曲线y=k/x(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为________.

答案解析

4

讨论

如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k/x (k≠0)的图象交于第二、四象限的点A(-2,a)和点B(b,-1),过A点作x轴的垂线,垂足为点C,ΔAOC的面积为4. (1)分别求出a和b的值;(2)结合图象直接写出mx+n>k/x中x的取值范围;(3)在y轴上取点P,使PB-PA取得最大值时,求出点P的坐标.

如图,点A是反比例函数y=3/x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为_______.

如图,一次函数y=x+1的图象与反比例函数y=k/x的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k/x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k/x的图象没有公共点.

如图,在ΔABC中,AB=AC,点A在反比例函数y=k/x(k>0,x>0)的图象上,点B,C在x轴上,OC=1/5 OB,延长AC交y轴于点D,连接BD,若ΔBCD的面积等于1,则k的值为_________.

如图,在平面直角坐标系中,一次函数y=1/2x+5和y=﹣2x的图像相交于点A,反比例函数y=k/x的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=1/2x+5的图像与反比例函数y=k/x的图像的另一个交点为B,OB,求△ABO的面积.

已知点A(x1,y1 ),B(x2,y2 ),C(x3,y3 )都在反比例函数y=k/x (k<0)的图像上,且x1<x2<0<x3,则y1,y2,y3的大小关系是【】

如图,一次函数y=kx-1的图象与反比例函数y=m/x的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.

已知反比例函数解析式y=k/x的图象经过(1,-2),则k=________.

如图,直线y=2x-6与反比例函数y=k/x(x>0)的图像交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标; (2)在ⅹ轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

如图所示,点P(3a,a)是反比例函数y=k/x(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

已知函数y=,则自变量x的取值范围是___________.

已知y=-x+5,当x分别取1,2,3,……,2020时,所对应y值的总和是_________.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=_________时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:___________________________.

如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论: abc>0;②b2-4ac>0;③8a+c 正确的有【 】

如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下: (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

把1-9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为【 】

若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是_________.

超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?

某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是【 】

如图,平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD其中C(c,0).当c=2时,会从c处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系:2当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.

如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是【 】

如图,已知点A(5,2),B(5,4),C(8,1),直线l⊥x轴,垂足为点M(m,0),其中m<5/2,若△A'B'C'与△ABC关于直线l对称,且△A'B'C'有两个顶点在函数y=k/x(k≠0)的图像上,则k的值为__________.

如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】

已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

在平面直角坐标系中,点P(- 20,a) 与点Q(b,13) 关于原点对称,则a+b的值为【 】