问答题(2018年广东省深圳市

已知顶点为A的抛物线y=a(x-1/2)²-2经过点B(-3/2,2),点C(5/2,2).

(1)求抛物线的解析式;

(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠0PM=∠MAF,求△POE的面积;

(3)如图2,点Q是折线A-B-C上一点,过点Q作QN//y 轴,过点E作EN//x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.

   

答案解析

(1)把B(-3/2,2)代入y=a(x-1/2)²-2,得a=1,∴抛物线的解析式为:y=(x-1/2)²-2;(2)由y=(x-1/2)²-2知A(1/2,-2),设直线AB的解析式为:y=kx+b,代入A,B的坐标,得:,解得:,∴直线AB的解析式为:y=-2x-1,易求得:E(0,-1),F(0,-7/4),M(-1/2,0),∵∠OPM=∠MAF,∴OP//AF,∴△OPE∼△FAE,∴OP/FA=OE/FE=4/3,∴OP=4/3 FA=4/3 =√5/3,设点P(t,-2t-1),则=√5/3,解得t1=-2/15,t2=-2/3,∴S△POE=1/2⋅OE⋅|t|=1/15或1/3.(3)若Q在AB上运动,如图,设Q(a,-2a-1),则NQ=-a,QN=-2a,由翻折知QN'=QN=-2a,N' E=NE=-a,由∠QN' E=∠N=90°,易知△QRN'∼△N'SE,∴QR/(N'...

查看完整答案

讨论

泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】

已知ΔABC的周长为16,点D,E,F分别为ΔABC三条边的中点,则ΔDEF的周长为【 】

如图,BC//DE,且BC<DE,AD=BC=4,AB+DE=10,则AE/AC的值为__________.

如图,在ΔABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D,若BC=4,则CD的长为_________.

如图,每个小正方形边长均为1,则图中的三角形(阴影部分)与下图中△ABC相似的是【 】

如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为【 】

在正方形ABCD中,等腰直角△AEF, ∠AFE=90°,连接CE,H为CE的中点,连接BH、BF、HF,发现BF/BH和∠HBF为定值. (1)①BF/BH=________;②∠HBF=________;③小明为了证明①②,连接AC交BD于O,连接OH,证明了OH/AF和BA/BO的关系,请你按他的思路证明①②.(2)小明又用三个相似三角形(两个大三角形全等)摆出下图,BD/AD=EA/FA=k,∠BDA=∠EAF=θ(0°<θ<90°).①FD/HD=________(用k的代数式表示)②FH/HD=________(用k,θ的代数式表示)

在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=√2,则AC=________.

不等式x-1>2的解集在数轴上表示为【 】

计算|1-tan60°|的值为【 】

若二次函数y=ax2+bx+c的图像与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2 ),且经过点A(0,2),过点A的直线l与x轴交于点C,与该函数的图像交于点B (异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=5/21.(1)抛物线的开口方向______(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.

若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是_________.

超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?

如图,抛物线y=ax2-2x+c(a≠0)过点O(0,0)和A(6,0),点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标; (3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合,连接EF,将ΔBEF沿EF折叠,点B的对应点为点B,ΔEFB'与ΔOBE的重叠部分为ΔEFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.

如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有【 】

若a+b=3,a2+b2=7,则ab=_______.

已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=_______.

如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

已知抛物线 y=x2-(m+1)x+2m+3.(1) 当m=0时,请判断点(2,4)是否在该抛物线上;(2) 该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3) 已知点E(-1,-1),F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

已知函数y=,则自变量x的取值范围是___________.

已知y=-x+5,当x分别取1,2,3,……,2020时,所对应y值的总和是_________.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=_________时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:___________________________.

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下: (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

把1-9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为【 】

使在实数范围内有意义,x的取值范围是__________.

已知抛物线y=1/2 x2+x+c与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.

如图,抛物线y=1/2 x2-3/2 x-9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行于BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)

已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1 ),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).

如图(左),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等.设x=AD,y=AE+CD,y关于x的函数图像如图(右),图像过点(0,2),则图像最低点的横坐标是________.