单项选择(2021年广东省广州市

抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为【 】

A、-5

B、-3

C、-1

D、5

答案解析

A

讨论

已知二次函数y=ax2+bx+c的图像经过(-2,1),(2-3)两点.(1)求b的值.(2)当c>-1时,该函数的图像的顶点的纵坐标的最小值是__________.(3)设(m,0)是该函数的图像与x轴的一个公共点,当-1<m<3时,结合函数的图像,直接写出a的取值范围.

已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1 (x1,y1 ),P2 (x2,y2)是抛物线上不同于A,B的两个点,记△P1 AB的面积为S1,△P2 AB的面积为S2.有以下结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的个数是【 】

已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当b/a的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则b/a的值是______.

已知抛物线y=-2x2+bx+c经过点(0,-2),当x<-4时,y随x的增大而增大,当x>-4时,y随x的增大而减小.设r是抛物线y=-2x2+bx+c与x轴的交点(也称公共点)的横坐标,m=(r9+r7-2r5+r3+r-1)/(r9+60r5-1).(1)求b,c的值;(2)求证:r4-2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你的结论.

设O为坐标原点,点A,B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A,B,过O作OC⊥AB于点C,则点C到y轴距离的最大值【 】

如图,抛物线y=ax²+2x-3与x轴交于A,B两点,且B(1,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=2/3 x-4/9分别与x轴、y轴交于C,F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】

如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(-2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB. (1)求抛物线的函数表达式;(2)当ΔBCD的面积等于ΔAOC的面积的3/4时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.

如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式;(2)若PC//AB,求点P的坐标;(3)连接AC,求ΔPAC面积的最大值及此时点P的坐标.

把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为【 】

如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论: abc>0;②b2-4ac>0;③8a+c 正确的有【 】

如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.

如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有【 】

若a+b=3,a2+b2=7,则ab=_______.

已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=_______.

把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为____________.

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

已知二次函数y=ax2+bx+c的图像过点(-1,0),且对任意实数x都有4x-12≤ax2+bx+c≤2x2-8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图像与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次数图像上的动点,问在x轴上是否存在点N,使得以A,C,M,N为顶点的四边形是平行四边形,若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.