单项选择(2022年山西省

2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园。六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是【 】

A、中过探火

B、中国火箭

C、中国行星探测

D、航天神舟

答案解析

B

【解析】

根据中心对称图形的定义进行判断,即可得出答案,把一个图形绕某一点旋转180°,如果旋转后的图形能

够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。

选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;

选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形。

讨论

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

下列哪个图形是正方体的展开图【 】

性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为_________. 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为_________;(2)如图(2),在四边形EFGH中,EF=EG=EH.在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)

若一个多边形的内角和是540°,则该多边形的边数为【 】

菱形的两条对角线长分别是6和8,则此菱形的周长是【 】

如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE. (1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是_____,位置关系是______;(2)问题探究:如图②,ΔAO'E是将图①中的ΔAOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断ΔPQB的形状,并证明你的结论;(3)拓展延伸:如图③,ΔAO'E是将图①中的ΔAOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求ΔPQB的面积.

如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为【 】

如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是【 】

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.