计算题(2025年理工数学Ⅰ

设Σ是由直线 绕直线 (t为参数)旋转一周得到的曲面,Σ1是Σ介于平面x+y+z=0与x+y+z=1之间部分的外侧,

计算曲面积分∬Σ1xdydz+(y+1)dzdx+(z+2)dxdy.

答案解析

解答过程见word版

讨论

计算曲线积分I=∫(4x-y)/(4x²+y² ) dx+(x+y)/(4x²+y² ) dy,其中I是曲线L:x²+y²=2,方向为逆时针方向.

计算∫L(x²+y²+z²)ds,其中L:x=acost,y=asint,z=bt,t∈[0,2π].

计算∫Γex(1-cosy)dx-ex(y-siny)dy,其中Γ:y=sinx,x∈[0,π],方向从(π,0)到(0,0).

已知有向曲线L为球面x²+y²+z²=2x与平面2x-z-1=0交线,从z轴正向往z轴负向看去为逆时针方向,计算曲线积分∫L(6xyz-yz²)dx+2x²zdy+xyzdz.

设连续可微函数z=f(x,y)由方程F(xz-y,x-yz)=0唯一确定,其中f(u,v)有连续的偏导数,L为正向单位圆周.试求:I=∮L(xz²+2yz)dy-(2xz+yz²)dx

已知L是第一象限中点从点(0,0)沿圆周x²+y²-2x=0到点(2,0),再沿圆周x²+y²=4到点(0,2)的曲线段,计算I=∫L3x²ydydx+(x³+x-2y)dy

设函数f(x,y)连续,则dy=【 】

已知有向曲线L是沿抛物线y=1-x²从点A(1,0)到B(-1,0)的一段,则曲线积分∫L(y+cosx)dx+(2x+cosy)dy=______.

设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.

设曲面:z=z(x,y)=x4+1/2 (√5-4y)∙x2+y2,柱壁面:y=x2-5/9,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]