设I(x0,x1 )=∬Σ/dydz,其中Σ为抛物面x=y²+z²与平面x=x0,x=x1所围立体表面的内侧,α>0,x1>x0>0,求极限I(x0,x1).
设I(x0,x1 )=∬Σ/dydz,其中Σ为抛物面x=y²+z²与平面x=x0,x=x1所围立体表面的内侧,α>0,x1>x0>0,求极限I(x0,x1).
暂无答案
求极限(-cotx/e-2x +1/e-xsin²x -1/x²)
设函数f∈C[0,1],记In=f(tn )dt(n≥1)证明:(1) In 存在,并且等于f(1).(2) 若f'(0)存在,则In=f(0)+1/n (f(t)-f(0))/t dt+o(1/n)
讨论级数(-1)n/(1+x²)n 在(-∞,+∞)上的收敛性和一致收敛性.
对于正项数列{an},如果有an+1/an=a,a>0,证明必有n√an=a.
设f(x)=(x-x0 )n φ(x),其中n为正整数,φ(x)在x0连续且φ(x0 )≠0,讨论f(x)在x0处能否取极值?
设连续可微函数z=f(x,y)由方程F(xz-y,x-yz)=0唯一确定,其中f(u,v)有连续的偏导数,L为正向单位圆周.试求:I=∮L(xz²+2yz)dy-(2xz+yz²)dx
设Σ为曲面z=(1≤x²+y²≤4)的下侧,f(x)是连续函数,计算I=∬Σ(xf(xy)+2x-y)dydz+(yf(xy)+2y+x)dzdx+(zf(xy)+z)dxdy.
设P=P(x,y,z),Q=Q(x,y,z)均为连续函数,Σ为曲面z=(x≤0,y≥0)的上侧,则∬ΣPdydz+Qdzdx=【 】
设平面有界区域D位于第一象限,由曲线xy=1/3,xy=3与直线y=1/3 x,y=3x围成,计算∬D(1+x-y)dxdy.
已知平面区域D={(x,y)|√(1-y²)≤x≤1,-1≤y≤1},计算∬Dx/√(x²+y²) dxdy.
若D是由(0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2)组成的R³的一个棱台,则∬D1/(y²+z²) dydz=________.
计算曲面积分∬Sxdydz+ydxdz+zdxdy=________,其中S:x²/a² +y²/b² +z²/c² ≤1,方向向外侧.
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.
计算曲线积分I=∫(4x-y)/(4x²+y² ) dx+(x+y)/(4x²+y² ) dy,其中I是曲线L:x²+y²=2,方向为逆时针方向.
计算∫L(x²+y²+z²)ds,其中L:x=acost,y=asint,z=bt,t∈[0,2π].
计算∫Γex(1-cosy)dx-ex(y-siny)dy,其中Γ:y=sinx,x∈[0,π],方向从(π,0)到(0,0).
已知有向曲线L为球面x²+y²+z²=2x与平面2x-z-1=0交线,从z轴正向往z轴负向看去为逆时针方向,计算曲线积分∫L(6xyz-yz²)dx+2x²zdy+xyzdz.
计算Gauss曲面积分I=∬Scos((n,r) ̂)/r² dS,其中S为光滑封闭曲面,原点不在S上,r为S上动点至原点的距离,(n,r) ̂为动点处外法向量n与径向r的夹角.
设数量场u=ln,则div(gradu)=________________.
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,共中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于【 】
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有2xydx+Q(x,y)dy=2xydx+Q(x,y)dy,求Q(x,y).
计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.