设函数f(x)在[0,1]上连续,在(0,1)内可导,过点A(0,f(0))与点B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f'' (ξ)=0.
设函数f(x)在[0,1]上连续,在(0,1)内可导,过点A(0,f(0))与点B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f'' (ξ)=0.
暂无答案
讨论级数(-1)n/(1+x²)n 在(-∞,+∞)上的收敛性和一致收敛性.
对于正项数列{an},如果有an+1/an=a,a>0,证明必有n√an=a.
设f(x)=(x-x0 )n φ(x),其中n为正整数,φ(x)在x0连续且φ(x0 )≠0,讨论f(x)在x0处能否取极值?
设连续可微函数z=f(x,y)由方程F(xz-y,x-yz)=0唯一确定,其中f(u,v)有连续的偏导数,L为正向单位圆周.试求:I=∮L(xz²+2yz)dy-(2xz+yz²)dx
已知方程a1/(x-λ1 )+a2/(x-λ2 )+a3/(x-λ3 )=0其中a1,a2,a3>0,λ1<λ2<λ3.证明:此方程在区间(λ1,λ2)和(λ2,λ3)中各有一根.
如果函数列{fn(x)}在区间(a,c]和[c,b)上一致收敛,那么{fn(x)}在(a,b)上一致收敛.
设函数f:[0,1]→R是连续的且在(0,1)上可微,若f满足:(1) f(0)=0;(2)存在常数M>0使得|f'(x)|≤M|f(x)|对任意x∈(0,1)成立.证明:在[0,1]上f(x)=0.
曲线y²=x在点(0,0)处的曲率圆方程为____________________.
函数f(x,y)=2x³-9x²-6y4+12x+24y的极值点是__________.
某产品的价格函数为p=,(p为单价,单位:万元;Q为产量,单位:件),总成本函数为C=150+5Q+0.25Q²(万元),则经营该产品可获得的最大利润为______(万元).
对数螺线ρ=eθ在点(ρ,θ)=(eπ/2,π/2)处的切线的直角坐标方程为__________.
设y=y(x)满足y'+1/(2√x) y=2+√x,y(1)=3,求y(x)的渐近线.
设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.